n-Fuzzy Proximity – III Fuzzy Topology Induced By n-Fuzzy Proximity

K. Sivakamasundari
Avinashilingam University For Women, Coimbatore – 641 043, INDIA.
Sivakamisai56@gmail.com

Abstract

In this paper, the fuzzy topology induced by n-fuzzy proximity is defined and a relation between the topologies induced by n-fuzzy proximity and its extension is obtained.

Key Words: Fuzzy topology, n-fuzzy proximity, extension of n-fuzzy proximity, I_n-valued fuzzy sets, nth upper approximation and nth lower approximation and nth lower approximation of a fuzzy set topology induced by proximity.

Mathematics Subject Classification: 54E05, 54E15.

1. Introduction

The concept of fuzzy topology was first introduced by Chang, C.L. [1]. Various notions in general topology were extended to fuzzy topology by many authors. In 1979, Katsaras [3] introduced the first definition of fuzzy proximity and the fuzzy topology induced by the fuzzy proximity. Jayalakshmi [2] introduced n^{th} order approximations of fuzzy sets. Sivakamasundari [4] introduced n-fuzzy proximity ρ_{n^*} and the extension of it to a fuzzy proximity $E_x(\rho_{n^*})$. The concept of fuzzy proximity base was introduced by Srivastava and Gupta [6] in 1980. Sivakamasundari [5] introduced n-fuzzy proximity base and product. In this paper n-fuzzy topology induced by n-fuzzy proximity is defined.

Here n-fuzzy proximity ρ_{n^*} and its extension, the fuzzy proximity, $E_x(\rho_{n^*})$ are used to prove that the topology $\delta(\rho_{n^*})$ induced by n-fuzzy proximity ρ_{n^*} is the same as the topology $\delta(E_x(\rho_{n^*}))$ induced by the fuzzy proximity $E_x(\rho_{n^*})$.

2. Preliminary Results

Definition 2.1

Let $I_n = \{0, 1/n, 2/n, ..., 1\}$. A I_n -valued fuzzy set on X is an element of the set I_n^X of all functions from X to I_n .

Definition 2.2 [4]

A binary relation ρ_{n^*} on I_n^{\times} is called an **n-fuzzy proximity on X** if ρ_{n^*} satisfies the following axioms.

For any f, g, $h \in I_n^X$.

(F
$$P_{n^*}1$$
) $f \rho_{n^*} g \text{ implies } g \rho_{n^*} f$

(F
$$P_{n^*}3$$
) $f \rho_{n^*}g$ implies $f \neq 0$ and $g \neq 0$

(F
$$P_{n^*}$$
 4) $f \rho_{n^*} g$ implies that there exists an $A \subseteq X$ such that $f \rho_{n^*} \chi_A$

and
$$(1-\chi_A)^{-}\rho_{n^*}g$$

(F
$$P_{n+}$$
 5) $f \wedge g \neq 0$ implies $f \phi_{n+} g$

The pair (X, ρ_{n*}) is called an **n-fuzzy proximity space**.

To extend the concept of n-fuzzy proximity to a fuzzy proximity on X, the concept of nth order approximation introduced in [2] is required. The definition and properties of nth order approximations are collected below.

Definition 2.3

With every fuzzy set f defined on a set X and with every positive integer n, a finite fuzzy set f with values in I is associated as follows:

For $x \in X$

(i) if
$$f(x) = 0$$
, define $f(x) = 0$.

(ii) if
$$1/n < f(x) \le (i+1)/n$$
 define ${}^n f(x) = (i+1)/n$, for $i = 0, 1, 2, ..., n-1$.

nf is called the nth upper approximation of f.

Proposition 2.4

(i)
$$f(x) = i/n \Rightarrow {}^{n}f(x) = i/n \text{ for } i = 1, 2, ..., n$$

(ii) For all
$$n, f \leq nf$$
.

(iii)
$$f \le g \Rightarrow {}^{n}f \le {}^{n}g$$

(iv)
$$f \le {}^n g \Rightarrow {}^n f \le {}^n g$$

$$(v) \qquad {}^{n}({}^{n}f) = {}^{n}f$$

(vi)
$$(v f_{\lambda}) = (v f_{\lambda})$$

$$(vii)$$
 $\binom{m}{k=1}f_k = \bigwedge_{k=1}^{m} \binom{n}{k}$

Definition 2.5

For each fuzzy set f on a set X, the **nth lower approximation** $_n$ f is defined as follows:

For
$$x \in X$$
,

- (i) if f(x) = 1 define f(x) = 1
- (ii) if $i/n \le f(x) < (i+1)/n$, define f(x) = i/n for i = 0, 1, 2, ..., n-1.

Proposition 2.6

- (i) If f(x) = i/n then f(x) = i/n, for i = 0, 1, ..., n-1
- (ii) $_{n}f(x) \le f(x)$ for all n.
- (iii) $f \le g \Rightarrow {}_{n}f \le {}_{n}g$.
- (iv) $_{n}f \leq g \Rightarrow _{n}f \leq _{n}g$
- $\mathbf{f}_{n} = (\mathbf{f}_{n})_{n} \qquad (\mathbf{v})$
- $(vi) \qquad {}_{n}(\wedge f_{\lambda}) = \wedge ({}^{n}f_{\lambda})$
- $(vii) \quad (\bigvee_{k=1}^{m} f_{k}) = \bigvee_{k=1}^{m} (f_{k})$

Proposition 2.7

- (i) $_{n}(1-f) = 1 _{n}^{n}f$ and $_{n}(1-f) = 1 _{n}f$
- (ii) ${}^{n}f \leq g \Rightarrow {}^{n}f \leq {}_{n}g$
- (iii) $f \le ng \implies {}^{n}f \le ng, f \le {}^{n}g \implies {}_{n}f \le g \le {}^{n}g$
- $(iv) n^n f = n^n f$
- (v) ⁿ(_nf) = _nf
- (vi) ${}^{n}f \neq 0 \Rightarrow f \neq 0$

Proposition 2.8

- (i) If $f \in I_n^X$ then $_nf = f = {}^nf$
- (ii) For $A \subseteq X$, ${}^{n}\chi_{A} = {}_{n}\chi_{A}$

Proposition 2.9 [4]

Given an n-fuzzy proximity ρ_{n^*} , it is extended to a fuzzy proximity $\mathbf{E}_{\mathbf{x}}(\rho_{n^*})$ as follows :

 $f(E_x(\rho_{n^*})) g \Leftrightarrow {}^n f \rho_{n^*} {}^n g$. Here $E_x(\rho_{n^*})$ is called the extension of ρ_{n^*} .

3. Fuzzy Topology Induced By N-Fuzzy Proximity

Definition [Katsaras, 3] 3.1

Let (X, ρ) be a fuzzy proximity space. For $f \in I^X$ define $cl\ f = 1 - \vee \{g \in I^X \mid f \ \rho \ g\}$.

The map $f \rightarrow cl$ f is a closure operator on I^{X} . The collection

 $\delta(\rho) = \{ \mathbf{f} \in \mathbf{I}^{\mathbf{X}} \mid \mathbf{cl} \ (\mathbf{1} - \mathbf{f}) = (\mathbf{1} - \mathbf{f}) \}$ is a fuzzy topology on X and it is called the fuzzy topology induced by ρ .

Definition 3.2

Let (X, ρ_n^*) be an n-fuzzy proximity space. For $f \in I_n^X$ define

$$\mathbf{K} \mathbf{I} \mathbf{f} = 1 - \mathbf{V} \{ \mathbf{g} \in \mathbf{I}_{\mathbf{n}}^{\mathbf{X}} | \mathbf{f}_{\mathbf{p}_{\mathbf{n}^*}}^{\mathbf{g}} \mathbf{g} \}.$$

Proposition 3.3

The map $f \to Kl$ f is a closure operator on I_n^X .

Proof

- (a) K1(0) = 0, K1(1) = 1
- (b) To prove $f \le Kl(f)$

Let $x \in X$, for $f, g \in I_n^X$ if $g \rho_{n^*} f$, then $g \wedge f = 0$ and hence either g(x) = 0 or f(x) = 0.

In both the cases we have $g(x) \le 1 - f(x)$. Thus $\sup_{g\rho_n \cdot f} g(x) \le 1 - f(x)$, which shows that $Kl \ f \ge f$.

(c) To prove $Kl(f \lor g) = (Kl f) \lor (Kl g)$

Let $f_1 \leq f_2$, for $f_1, f_2 \in I_n^X$.

Then for $g \in I_n^{X}$, $g \stackrel{-}{\rho}_{n^*} f_2 \Rightarrow g \stackrel{-}{\rho}_{n^*} f_1$

$$\Rightarrow$$
Kl (f2) \geq Kl (f1).

Hence, $Kl(f \lor g) \ge (Kl f) \lor (Kl g)$

Now assume $((Kl f) \lor (Kl g))(x) \le (Kl (f \lor g))(x)$ for some $x \in X$ (3.1)

Then $[\lor \{ h \in I_n^X \mid h \stackrel{\frown}{\rho}_{n^*} f \} (x)] \land [\lor \{ h \in I_n^X \mid h \stackrel{\frown}{\rho}_{n^*} g \} (x)]$

$$> \vee \{h \in I_n^X \mid h \stackrel{-}{\rho}_{n^*} (f \vee g)\} (x)$$

There exist $h_1, h_2 \in I_n^X$ s.t $h_1 \rho_{n^*} f$, $h_2 \rho_{n^*} g$ and

$$h_1(x) > \vee \{h \mid h \stackrel{-}{\rho}_{n^*}(f \vee g)\} (x)$$

$$h_2(x) > \sqrt{\{h \mid h \rho_{n^*}(f \vee g)\}} (x)$$

Hence, $(h_1 \wedge h_2) \stackrel{\frown}{\rho}_{n^*} (f \vee g)$ and $(h_1 \wedge h_2) (x) > \vee \{h \mid h \stackrel{\frown}{\rho}_{n^*} (f \vee g)\} (x)$ (3.2)

(3.2) contradicts (3.1)

Therefore, $Kl(f \lor g) = (Kl f) \lor (Kl g)$

(d) To prove Kl (Kl f) = Kl f, it is sufficient to prove g ρ_n^* (Kl f) iff g ρ_n^* f. g ρ_n^* f \Rightarrow g ρ_n^* (Kl f) is always true.

Suppose
$$g \rho_{n^*}(Kl f)$$
 but $g \rho_{n^*} f$, then there exists $\chi_A \in I_n^X$ such that $\chi_A \rho_{n^*} g$ (3.3)

and
$$(1 - \chi_A) \rho_{n*} f$$
. (3.4)

$$(3.4) \Rightarrow Kl f \leq \chi_A$$

$$\Rightarrow \chi_A \rho_{n^*} g \tag{3.5}$$

(3.3) and (3.5) are contradictory.

Hence, the function $f \rightarrow Kl f$ is a closure operator.

Definition 3.4

The collection $\delta(\rho n^*) = \{f \in I_n^X \mid Kl(1-f) = (1-f)\}$ is a fuzzy topology on X and it is called the n-fuzzy topology induced by ρ_n^* .

Proposition 3.5

Let cl be the closure operator w.r.t. to the topology $\delta(E_x(\rho_n^*))$. Then cl f=Kl (nf).

Proof

For
$$f \in I^X$$
, cl $f = 1 - \sqrt{g \in I^X \mid g \mid_{\mathbf{x}} (\rho_{n^*})} f$

$$= 1 - \sqrt{g \in I^X \mid_{\mathbf{x}} \rho_{n^*} f} \quad [By \text{ Proposition 2.9}]$$
(3.6)

Proposition 2.4 (ii),

$$g \leq {}^{n}g \qquad \Rightarrow \vee \{g \in I^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{\bullet}}} {}^{n}f\}$$

$$\leq \vee \{{}^{n}g \in I_{n}^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{\bullet}}} {}^{n}f\} \qquad (3.7)$$

Now
$$\{ {}^{n}g \in I_{n}^{X} / {}^{n}({}^{n}g) \xrightarrow{\rho_{n}} {}^{n}({}^{n}f) \} \subseteq \{ g \in I^{X} / {}^{n}g \xrightarrow{\rho_{n}} {}^{n}f \}$$

Proposition 2.4 (v),

$${}^{n}({}^{n}g) = {}^{n}g \implies \{{}^{n}g \in I_{n}^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{*}}} {}^{n}f\} \subseteq \{g \in I^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{*}}} {}^{n}f\}$$

$$\Rightarrow \vee \{{}^{n}g \in I_{n}^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{*}}} {}^{n}f\} \leq \vee \{g \in I^{X} / {}^{n}g \stackrel{\frown}{\rho_{n^{*}}} {}^{n}f\} \qquad (3.8)$$

(3.7) and (3.8)
$$\Rightarrow \vee \{g \in I^X / {}^n g \xrightarrow{\rho_{n^*}} {}^n f\} = \vee \{{}^n g \in I_n^X / {}^n g \xrightarrow{\rho_{n^*}} {}^n f\}$$

Therefore
$$\operatorname{cl} f = 1 - \vee \{ {}^{n}g \in I_{n}^{X} | {}^{n}g \stackrel{\frown}{\rho_{n^{*}}} {}^{n}f \} = \operatorname{Kl}({}^{n}f)$$

Theorem 3.6

Any fuzzy open set in $\delta(E_x(\rho_n^*))$ is In-valued and $\delta(E_x(\rho_n^*)) = \delta(\rho_n^*)$.

Proof

Since cl f = Kl (n f), cl f is I_{n} -valued. \therefore Any fuzzy open set in $\delta(E_{x}(\rho_{n^{*}}))$ is I_{n} -valued.

Now
$$\delta(E_x(\rho_{n^*})) = \{f \in I_n^X \mid cl \ (1-f) = 1-f\}$$

 $= \{f \in I_n^X \mid Kl \ (^n(1-f) = 1-f\}$
Proposition 2.8 (i) $\Rightarrow (1-f) = ^n(1-f)$ for $f \in I_n^X$
Hence, $\delta(E_x(\rho_{n^*})) = \{f \in I_n^X \mid Kl \ (1-f) = 1-f\} = \delta(\rho_{n^*})$.

References

- [1] C.L.Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- [2] P. Jeyalakshmi, A New Approach to the Study of Fuzzy Topological Spaces, J. Analysis, 7 (1999) 83-88.
- [3] A.K.Katsaras, Fuzzy Proximity Spaces, J. Math. Anal. Appl., 68 (1979) 100-110.
- [4] K.Sivakamasundari, n-Fuzzy Proximity and n-Fuzzy Uniformity (Accepted by ACTA CIENCIA INDICA (MATHEMATICS).
- [5] K.Sivakamasundari, n-Fuzzy Proximity Base and Product (Communicated to ACTA CIENCIA INDICA (MATHEMATICS).
- [6] P.Srivastava, R.L.Gupta, Fuzzy Proximity Bases and Subbases, J. Math. Anal Appl., 78 (1980) 588-597.