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Abstract

The eccentric connectivity index of a graph G is defined as £°(G) =

3. deg(v)ecc(v) ,where ecc(v) is the eccentricity of a vertex v in G .In
veV(G)
this paper we have obtained some bounds for the complimentary prism

GG, the generalized complementary prism Gmtns Gmn, an,m,an’m, the
Cartesian product Ky, X Cn, Km X Py, Km X Ky, and the cycles identifying
at a vertex.
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1 Introduction

Throughout this paper, all graphs
a vertex v € V(G), deg(v) denotes

minimum and maximum degree of

distance d(u, v) is defined as the len|
The eccentricity £(v) of a vertex v is
remaining vertices. The radius r(G|
vertices of G, while the diameter ¢

e considered are simple and connected. For
fhe degree of v. 8(G) and A(G) represent the
(: respectively. For vertices u,v € V(G), the
rth of the shortest path between v and v in G.
the maximum among the distances from v to
of graph is the minimum eccentricity of the
I(G) of a graph is the maximum eccentricity

of the vertices of G. The total eceentricity of the graph G, denoted by E(G’)

is defined as the sum of eccentric
£§(G)= Y ecc(v). The eccentric

S deg(v)ec

veV{(G)
defined as £(G)

veV{G)

Kathiresan and Arockiaraj int
tary prisms and studied the Wien

prisms [7].

Let G and H be any two graj]

R and S be subsets of V(G) = {u
spectively. The complementary pr
1<i<py,1 <7< pe} and (w2

(i) if i = h,u; € R and vjv € B

(i) if j = k,v; € S and wiup € B

In other words, G(R)OH(S) is th
of G by a copy of H, each vertq
v; € S of H by a copy of G an

ties of all the vertices of graph G. That is,
connectivity index of G denoted by £°(G), is

v).

roduced some generalization of complemen-

—

er index of those generalized complementary

hs on p; and pp vertices, respectively and let
|, Ug,y - .-y Up, } and V(H) = {v1,v2,...,Up,} TE
bduct G(R)OH (S) has the vertex set {(u:; ;) :
and (uy,vy) are adjacent in G(R)QH(S)

(H),or if i = h,u; ¢ R and vjv ¢ E(H) or

(G), orif j =k, v; ¢ S and wiup ¢ E(G).

b graph formed by replacing each vertex u; € R
x u; ¢ R of G by a copy of H, each vertex
| each vertex v; ¢ S of H by a copy of G. If

R = V(G) (respectively, S = V(H)), the complementary product can be written
as GOH(S) (respectively, G(R)[OH). The complementary prism GG obtained

from G is GOK,(S) with |S| =1
with a matching between the cor

e

In GG, we have an edge U
this edge as Ky or Ky or Pa. B]

generalize the complementary pr

f’

“That is, GG has a copy of G and a copy of G

responding vertices [7].
for each vertex v in G. The authors consider

taking m copies of G and n copies of G, they

jsm as a graph GO H(S), where H = Kmyn {or
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Kpn) and S is a subset of V(H) having m vertices and H = Cy,, (or Py,,) whose
vertex set is {v1,v,..., v} and S = {1, v3, ..., am-1} [7].

Motivated by these works, we have obtained the bounds of eccentric connectiv-
ity index for the complimentary prism GG, the generalized complimentary prism
GrtnsGrmns G s Gimm» the Cartesian product Ko, X G, K X Py, K X Ky and
the cycles identifying at a vertex.

Theorem 1.1. [7] For the complementary prism GG,7(GG) = 2 and

_ _{ 2 i dG)=dC) =2

3 otherwise.
Theorem 1.2. {7] For any connected graph G with p > 2,

2 ifdG)=dG)=2andm=n=1
3 otherwise.

d(Gm+n) = {

Theorem 1.3. [7] For any connected graph G withp > 2,

d(Gmpn) =

2 fdG)=dG)=2adm=n=1
3 otherwise.

Theorem 1.4. [7] For any connected graph G with p > 2,

2m  ifm>1
(Gt ) =4 2 ifm=1 and d(G) = d(G) = 2

3 otherwise.

Theorem 1.5. [7] For any connected graph G with p > 2 dGe ) =2r+14f
m=2r > 2 and r is a positive integer.

2 Main Results

Theorem 2.1. For any connected graph G € Faq on p vertices, 2p(p+ 1) <
€(GG) < 3p(p +1). When G € Fp, £5(GG) =2p(p + 1).

Proof. For any connected graph G with G ¢ Fy, of p vertices by Theorem 1.1,
r(GG) = 2 and d(GG) = 3. So for any vertex v in GG, 2 < ecc(v) < 3.
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Now, ¢°(GG)

Also, £5(GG)

Hence 2p(p+1) < £(GG) < 3p(p+
and hence £¢(GG) = 2p(p + 1).
Theorem 2.2. For any connected
nplp ~ 1) + (m + n)? — (m
(Mgﬂl+(m+n)2—(m+n)).
Proof. When either m # lorn
d(Gm+n) = 3. So, for any vertex
of edges in Gqr is

|E(Gumin)| = mg +1

= Z deg(v)ecc(v)

veV{GT)

>2 Y deg(v)

veV(GT)

“(G)+2)

[

> 2p(p+1).
= Z deg(v)ecc(v)

vEV(GER)

<3 Z deg(v)

vEV(GE)

() +7)

3F@*4)+4

v

v

(A

(A

2
< 3p(p+1).

1). When G € Fyp,, r(GG) = 2 and d(GG) = 2
‘ ' O

graph G with m # 1 or n # 1, 2(m — n)q +
+- n) < fc(G{m+n)) < 3(m - n)q+

# 1, by Theorem 1.2, r(Gpin) = 2 and
v € V(Gmin) 2 < ece(v) < 3. The number

()¢ (")

= (m —N)g + l[np2 —np + (m+n)? = (m+n).

Therefore, £4(Grin) = Z
VEV (Gl

2
deg(v)ecc(v)

+n)
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>2 Y deg(v)

vEV(Gmin)
> 2(m — n)q + [np® — np+ (m + n)? — (m + n)]
Also, &(Gmin) = Y deg(v)ecc(v)

vEV(Gm4n)

<3 Y deg(v)

1}6V(G7n+n)

< 3(m—n)g+ -g[np2 —np+ (m+n)? - (m+n)

Hence the result follows O

Theorem 2.3. For any connected graph G withm > 1, n > 1 and G & Fy,
2(m = n)q+ np(p — 1) + mn < £(Gpn) < 3(m —n)g + 3[np(p - 1) + mn).

Proof. Since m > 1, n > 1 and G & Fy,, by Theorem 1.3, d(Gyn) = 3. This
implies that 2 < ecc(v) < 3. If G has g edges, then G has (5) - ¢ edges.

So | E(Gpmp) | =mg+n ((g) - q) + mn
=(m-—n)g+ g[p2—-p+2m].
Hence, £°(Gpn) = Z deg(v)ecc(v)

vEV (Gm,n)

>2 Y deg(v)

vev(a(n;.n)

> 2(m —n)q + np(p — 1) + mn.

Also, E5(Gma) = D deg(v)ece(v)

vE V(G{m,n)

<3 Z deg(v)

e V(G(m‘.n)

<3m-—n)g+ g[np(p — 1) + mn].

Hence the result follows. |

Theorem 2.4. For any connected graph G of p vertices with m > 1,
2 (mp + 3m — 2) < £°(G¥,) < mp(mp +3m —2).
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Proof. For m > 1, by Theorem 14, r(G}, ) = 7 and d(G?, ..) = 2m. This
implies that m < ece(v) < 2m. If § has g edges, then G has (3) — g edges.

So | E(Gmm) | =mg+m (g) - q) +p(2m — 1)

2 e

mp + 3m - 2].
Now, £°(Gh.m) = z deg(v)ece(v)

I’EG?u.m
<2m Z deg(v)
VEGH -

< nip{mp + 3m — 2.

Also, £(GE, ) = Z deg(v)ece(v)

148G, m

m Z deg(v)

v

v
13
3

Thus the result follows. ' O

Theorem 2.5. For any connected graph G with p vertices and even integer
m 22, €(Gom) = (B2) [mp® +Bmp).

Proof. For m > 2, by Theorem 1.5, 7(G%, ) = d(an,m) =2m+ 1.

Also, | E(Gmm)|=mqg+m ((g) — q) + 2mp

-1
=mq+m[£—(-—p2——)—q]+2mp

_ mp®—mp
- 2

2 |
= 5lmp* — mp + dmyp)

+ 2mp

= mp® + dmp.
Therefore, £°(G;, ) = Z deg(v)ecc(v)

veV (GG m)
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= (m+ 1) Z deg(v)

vEGE,
m+1 .
= ( )[mp2 + 3mp).
O
Theorem 2.6. For any m,n > 1,
3m2n?4+2mZntdmn—6mn—mi-m . .
{c(KmXPn):' 3mZn2+2m? 342 6 ’ ?’fnstdd
mptem addmn —fmn if n is even.

Proof. Let v;;, 1 <1< m, 1 <j < n be the vertices of K, x P, where the
induced subgraph of {v;; : 1 < i < m} is the j* copy of K,, and the induced
subgraph of {v;; : 1 < j < n} is the ¢ copy of P,. In this graph,

—-74+1 1<3<[8
ecc(vi'j) — n J + H —--.;l — |—2-|
ecc(Vin—j+1), [B1+1<j<nforall1<i<m.
deg(v; 1) = m = deg(v;,), forall 1 <1< mand
deg(v;;) =m+1,2<j<n-~land1<i< m.

E(Km x P) = Z deg(v)ecc{v)

VEV (K X Pn)
m n-1
= ZZdeg v;,1)ece(v; +ZZdeg v; 5 )ece(v; ;)
i=1 i=1 j=2
m n-1
= ZmZ ecc(vi1) + (m+1) ZZECC(‘U;J)
t=1 j=2
m n—1
=2m?n + (m + 1) ZZBCC(U"J)'
i=1 j=2
Case 1. nis odd.
In this case,
m n-—1 m 2l
ZZecc(v,] = 2226(36 Vi j +Zecc Vs 1)
=1 =2 i=] j=2
n—1
7 n+1
I NISTEIES
i=1 j=2 i=]
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i=1 | j=2

=2i l:i n+1)—

E,MI

= m K”—g—?’) (n+1) -

= %[3712 —6p — 1]

Therefore,£(K,, x P,) = 2m?*n + (n

+1)

(25~

|

2

(3n —6n~—1)

_ 3m?n® 4+ 2m? n+3mn —6mn—m?—m

Case 2.
In this case,

7 is even.

m n-—l

Z Z ecc(v; ;) =

=1 j=2

4

n
mo 2

2 ‘z Zecc(v,:,j)

=1 j=2

n
m 7

EZ(n—j+1)

=1 j=2

> [‘iﬂ“ -3

=1 | j=2 j=2

i
[\]
~3

.::-13

n [(g —-‘1) (n+1) —

[3n? — 6n).

Therefore, £(Km X B,) =

Theorem 2.7. For any m > 1 and

oo

il

2min + (m + 1) [-742(375" - Gn)]
nn 4 (m? + m)(3n* - 6n)

4
m?n? + 2m?n + 3mn? — 6nmn

4
W

n > 3, £(Km x Cp) = mn(m + 1)(15] +1).
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Proof. In K, x Cy, ecc(v) = | 2] 41 and deg(v) = m+1, for all v € V(K x C,).

Henee, £9(K,, x () = Z deg(v)ece(v)
'UEV(Kmen)

“n S ([3]+)

VEV (Km X Chn)

= mn(m + 1) (E—J + 1) :

Theorem 2.8. £5(K,, X K,) = 2mn{m +n — 2) for any m,n > 2.

Proof. Since K, x K, € Fy, and each vertex is of degree m + n — 2, the result
follows. d

Theorem 2.9. Let G be the graph obtained by identifying a vertex of the cycles
Cm and C,,. Then

m?4+n?4+mn-m—-n—1  ifm and n are odd

. m?2+n?+mn—m if m is odd and n is even
£(G) = o o . .
m +n‘+mn—n if m is even and n is odd
m? +n? +mn if m and n is even.
Proof. Let wy,us,..., Uy, and vy, va,. .., v, be the vertices of the cycles C,, and

C, respectively and u; and v, are identified as a single vertex in G. Assume that
m < n. InG,

ecc(u;) = { 3l +i-1,

ecc(Um-i),

13, 2<i< |3 - (3] +1
coetw) =4 i+ (3] -1, (3] [g]+2SiS [§)+]
ecc(Vn—i), 3] +2<i<n.
3 =1
Also, deg(u) =4 & ° and
2, 2<i<m

deg() =2, 2<i<mn
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Therefore, £4(G) =

deg{tjuce(v)

vEV(G
= decc(y) + 2‘ ece(u;) + QZecc Y
1-" i=2
Case 1. m and n are odd.
In this case,
1 atl 3 2l 1
. . n -— n— . n—
g(G)-4( > )+4;( +z>+4 ; ( 5 )
+4 Y (m;—+?)
i=25 42
n—1 m—1 mH)(mM)
= 4 —4
4(2)+(2)(2) S
+4 n—-m 7+ 1 4 m—1 3
2 2
+4 (nT-H)(g__;_Q)” nm+1 nm+2
2
w——m2+n2+mn—-m——n—l.
Case 2. m is odd and n is even.
In this case,
) . n—2 gy n
5(0)_4(§)+41=2 +z)+4 ; (-2-)
3 m—3 ) min—1
ra 3 [(5F) e ()
-1\ fn-2 (mtly(mi3) n—-m+1\ /n
=9 2 2~ _ DM (E
n+4( > )( 3 )+4 > 4+4( : )(2)
m-3) (m-3\ | [ =F2)(=35*)
+4( 5 )( 5 )+4[ 5 > +{n+m-1)

=m?+ n? 4+ mn — m.

Case 3. m is even and n is odd.
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In this case,

n—1 2 n—3 m+n—1 in n— 134
¢ _ - E cay oMY 4N —

= m? + n? +mn — n.

Case 4. m is even and n is odd.

In this case,

(6 =4 (2 )Hi[(
5 0 s

= m? + n? + mn.
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