ECCENTRIC CONNECTIVITY INDEX OF GENERALIZED COMPLEMENTARY PRISMS

¹S. Arockiaraj and ²Vijaya Kumari

Abstract

The eccentric connectivity index of a graph G is defined as $\xi^c(G) = \sum_{v \in V(G)} deg(v)ecc(v)$, where ecc(v) is the eccentricity of a vertex v in G. In this paper we have obtained some bounds for the complimentary prism $G\overline{G}$, the generalized complementary prism G_{m+n} , $G_{m,n}$, $G_{m,m}^p$, $G_{m,m}^c$, the Cartesian product $K_m \times C_n$, $K_m \times P_n$, $K_m \times K_m$ and the cycles identifying at a vertex.

Keywords. eccentricity, radius, diameter, complementary prism, Cartesian product.

2010 Mathematics Subject Classification Number. 05C15, 05C38.

^{*}Research Scholar of Karpagam University, Coimbatore, Tamilnadu, INDIA

¹Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, INDIA. e-mail: psarockiaraj@gmail.com

²Department of Mathematics, Vijaya College, Mulky - 574 154, Karnataka, INDIA. e-mail: vijayasullal@gmail.com

1 Introduction

Throughout this paper, all graphs we considered are simple and connected. For a vertex $v \in V(G)$, deg(v) denotes the degree of v. $\delta(G)$ and $\Delta(G)$ represent the minimum and maximum degree of G respectively. For vertices $u, v \in V(G)$, the distance d(u, v) is defined as the length of the shortest path between u and v in G. The eccentricity $\xi(v)$ of a vertex v is the maximum among the distances from v to remaining vertices. The radius r(G) of graph is the minimum eccentricity of the vertices of G, while the diameter d(G) of a graph is the maximum eccentricity of the vertices of G. The total eccentricity of the graph G, denoted by $\xi(G)$ is defined as the sum of eccentricities of all the vertices of graph G. That is, $\xi(G) = \sum_{v \in V(G)} ecc(v)$. The eccentric connectivity index of G denoted by $\xi^c(G)$, is defined as $\xi^c(G) = \sum_{v \in V(G)} deg(v)ecc(v)$.

Kathiresan and Arockiaraj introduced some generalization of complementary prisms and studied the Wiener index of those generalized complementary prisms [7].

Let G and H be any two graphs on p_1 and p_2 vertices, respectively and let R and S be subsets of $V(G) = \{u_1, u_2, \ldots, u_{p_1}\}$ and $V(H) = \{v_1, v_2, \ldots, v_{p_2}\}$ respectively. The complementary product $G(R) \square H(S)$ has the vertex set $\{(u_i, v_j): 1 \le i \le p_1, 1 \le j \le p_2\}$ and (u_i, v_j) and (u_h, v_k) are adjacent in $G(R) \square H(S)$

(i) if
$$i = h, u_i \in R$$
 and $v_j v_k \in E(H)$, or if $i = h, u_i \notin R$ and $v_j v_k \notin E(H)$ or

(ii) if
$$j = k, v_j \in S$$
 and $u_i u_h \in E(G)$, or if $j = k, v_j \notin S$ and $u_i u_h \notin E(G)$.

In other words, $G(R) \square H(S)$ is the graph formed by replacing each vertex $u_i \in R$ of G by a copy of H, each vertex $u_i \notin R$ of G by a copy of \overline{H} , each vertex $v_j \in S$ of H by a copy of G and each vertex $v_j \notin S$ of G by a copy of G. If G = V(G) (respectively, G = V(G)), the complementary product can be written as $G \square H(S)$ (respectively, $G(R) \square H$). The complementary prism G G obtained from G is $G \square K_2(S)$ with |S| = 1. That is, G G has a copy of G and a copy of G with a matching between the corresponding vertices $G \cap G$.

In $G\overline{G}$, we have an edge $v\overline{v}$ for each vertex v in G. The authors consider this edge as K_2 or $K_{1,1}$ or P_2 . By taking m copies of G and n copies of \overline{G} , they generalize the complementary prism as a graph $G\Box H(S)$, where $H = K_{m+n}$ (or

 $K_{m,n}$) and S is a subset of V(H) having m vertices and $H = C_{2m}$ (or P_{2m}) whose vertex set is $\{v_1, v_2, \ldots, v_{2m}\}$ and $S = \{v_1, v_3, \ldots, v_{2m-1}\}$ [7].

Motivated by these works, we have obtained the bounds of eccentric connectivity index for the complimentary prism $G\overline{G}$, the generalized complimentary prism $G_{m+n}, G_{m,n}, G_{m,m}^p, G_{m,m}^c$, the Cartesian product $K_m \times C_n$, $K_m \times P_n$, $K_m \times K_m$ and the cycles identifying at a vertex.

Theorem 1.1. [7] For the complementary prism $G\overline{G}$, $r(G\overline{G}) = 2$ and

$$d(G\overline{G}) = \begin{cases} 2 & \text{if } d(G) = d(\overline{G}) = 2\\ 3 & \text{otherwise.} \end{cases}$$

Theorem 1.2. [7] For any connected graph G with $p \geq 2$,

$$d(G_{m+n}) = \begin{cases} 2 & \text{if } d(G) = d(\overline{G}) = 2 \text{ and } m = n = 1 \\ 3 & \text{otherwise.} \end{cases}$$

Theorem 1.3. [7] For any connected graph G with $p \geq 2$,

$$d(G_{m,n}) = \begin{cases} 2 & \text{if } d(G) = d(\overline{G}) = 2 \text{ and } m = n = 1 \\ 3 & \text{otherwise.} \end{cases}$$

Theorem 1.4. [7] For any connected graph G with $p \geq 2$,

$$d(G_{m,m}^p) = \begin{cases} 2m & \text{if } m > 1\\ 2 & \text{if } m = 1 \text{ and } d(G) = d(\overline{G}) = 2\\ 3 & \text{otherwise.} \end{cases}$$

Theorem 1.5. [7] For any connected graph G with $p \geq 2$ $d(G_{m,m}^c) = 2r + 1$ if $m = 2r \geq 2$ and r is a positive integer.

2 Main Results

Theorem 2.1. For any connected graph $G \notin F_{22}$ on p vertices, $2p(p+1) \le \xi^c(G\overline{G}) \le 3p(p+1)$. When $G \in F_{22}$, $\xi^c(G\overline{G}) = 2p(p+1)$.

Proof. For any connected graph G with $G \notin F_{22}$ of p vertices by Theorem 1.1, $r(G\overline{G}) = 2$ and $d(G\overline{G}) = 3$. So for any vertex v in $G\overline{G}$, $2 \le ecc(v) \le 3$.

$$\begin{aligned} &\operatorname{Now},\,\xi^{c}(G\overline{G}) = \sum_{v \in V(G\overline{G})} deg(v)ecc(v) \\ &\geq 2 \sum_{v \in V(G\overline{G})} deg(v) \\ &\geq 4 \left(\binom{p}{2} + p \right) \\ &\geq 4 \left[\frac{p(p-1)}{2} + p \right] \\ &\geq 2p(p+1). \\ &\leq 3 \sum_{v \in V(G\overline{G})} deg(v)ecc(v) \\ &\leq 3 \sum_{v \in V(G\overline{G})} deg(v) \\ &\leq 3 \left(\binom{p}{2} + p \right) \\ &\leq 3 \left[\frac{p(p-1)}{2} + p \right] \\ &\leq 3p(p+1). \end{aligned}$$

Hence $2p(p+1) \leq \xi^c(G\overline{G}) \leq 3p(p+1)$. When $G \in F_{22}$, $r(G\overline{G}) = 2$ and $d(G\overline{G}) = 2$ and hence $\xi^c(G\overline{G}) = 2p(p+1)$.

of edges in G_{m+n} is

Theorem 2.2. For any connected graph G with $m \neq 1$ or $n \neq 1$, 2(m-n)q + $np(p-1) + (m+n)^2 - (m+n) \le \xi^c(G_{(m+n)}) \le 3(m-n)q + \left(\frac{3np(p-1)}{2} + (m+n)^2 - (m+n)\right).$

Proof. When either $m \neq 1$ or $n \neq 1$, by Theorem 1.2, $r(G_{m+n}) = 2$ and $d(G_{m+n}) = 3$. So, for any vertex $v \in V(G_{m+n}), 2 \leq ecc(v) \leq 3$. The number

$$|E(G_{m+n})| = mq + n\left(\binom{p}{2} - q\right) + \binom{m+n}{2}$$

$$= (m-n)q + \frac{1}{2}[np^2 - np + (m+n)^2 - (m+n)].$$
Therefore, $\xi^c(G_{m+n}) = \sum_{v \in V(G_{m+n})} deg(v)ecc(v)$

$$\geq 2 \sum_{v \in V(G_{m+n})} deg(v)$$

$$\geq 2(m-n)q + [np^2 - np + (m+n)^2 - (m+n)]$$
Also, $\xi^c(G_{m+n}) = \sum_{v \in V(G_{m+n})} deg(v)ecc(v)$

$$\leq 3 \sum_{v \in V(G_{m+n})} deg(v)$$

$$\leq 3(m-n)q + \frac{3}{2}[np^2 - np + (m+n)^2 - (m+n)]$$

Hence the result follows

Theorem 2.3. For any connected graph G with m > 1, n > 1 and $G \notin F_{22}$, $2(m-n)q + np(p-1) + mn \le \xi^{c}(G_{m,n}) \le 3(m-n)q + \frac{3}{2}[np(p-1) + mn].$

Proof. Since m > 1, n > 1 and $G \notin F_{22}$, by Theorem 1.3, $d(G_{m,n}) = 3$. This implies that $2 \le ecc(v) \le 3$. If G has q edges, then \overline{G} has $\binom{p}{2} - q$ edges.

So
$$|E(G_{m,n})| = mq + n\left(\binom{p}{2} - q\right) + mn$$

 $= (m-n)q + \frac{n}{2}[p^2 - p + 2m].$
Hence, $\xi^c(G_{m,n}) = \sum_{v \in V(G_{m,n})} deg(v)ecc(v)$
 $\geq 2\sum_{v \in V(G_{(m,n)})} deg(v)$
 $\geq 2(m-n)q + np(p-1) + mn.$

Also,
$$\xi^c(G_{m,n}) = \sum_{v \in V(G_{(m,n)})} deg(v)ecc(v)$$

$$\leq 3 \sum_{v \in V(G_{(m,n)})} deg(v)$$

$$\leq 3(m-n)q + \frac{3}{2}[np(p-1) + mn].$$

Hence the result follows.

Theorem 2.4. For any connected graph G of p vertices with m > 1, $\frac{mp}{2}(mp + 3m - 2) \le \xi^{c}(G_{m,m}^{p}) \le mp(mp + 3m - 2)$.

Proof. For m > 1, by Theorem 1.4, $r(G_{m,m}^p) = m$ and $d(G_{m,m}^p) = 2m$. This implies that $m \le ecc(v) \le 2m$. If G has q edges, then \overline{G} has $\binom{p}{2} - q$ edges.

So
$$|E(G_{m,m})| = mq + m\left(\binom{p}{2} - q\right) + p(2m - 1)$$

$$= \frac{mp^2 - mp}{2} + 2mp - p$$

$$= \frac{p}{2} |mp + 3m - 2|.$$
Now, $\xi^c(G_{m,m}^p) = \sum_{v \in G_{m,m}^p} deg(v)ecc(v)$

$$\leq 2m \sum_{v \in G_{m,m}^p} deg(v)$$

$$\leq mp[mp + 3m - 2].$$
Also, $\xi^c(G_{m,m}^p) = \sum_{v \in G_{m,m}^p} deg(v)ecc(v)$

$$\geq m \sum_{v \in G_{m,m}^p} deg(v)$$

$$\geq m \sum_{v \in G_{m,m}^p} deg(v)$$

$$\geq mp(mp + 3m - 2)$$

Thus the result follows.

Theorem 2.5. For any connected graph G with p vertices and even integer $m \geq 2$, $\xi^c(G_{m,m}^c) = \left(\frac{m+1}{2}\right)[mp^2 + 3mp]$.

Proof. For $m \geq 2$, by Theorem 1.5, $r(G_{m,m}^c) = d(G_{m,m}^c) = 2m + 1$.

Also,
$$|E(G_{m,m})| = mq + m\left(\binom{p}{2} - q\right) + 2mp$$

$$= mq + m\left[\frac{p(p-1)}{2} - q\right] + 2mp$$

$$= \frac{mp^2 - mp}{2} + 2mp$$

$$= \frac{1}{2}[mp^2 - mp + 4mp]$$

$$= mp^2 + 3mp.$$
Therefore, $\xi^c(G_{m,m}^c) = \sum_{v \in V(G_{m,m}^c)} deg(v)ecc(v)$

$$= (m+1) \sum_{v \in G_{m,m}^c} deg(v)$$
$$= \frac{(m+1)}{2} [mp^2 + 3mp].$$

Theorem 2.6. For any $m, n \geq 1$,

$$\xi^{c}(K_{m} \times P_{n}) = \begin{cases} \frac{3m^{2}n^{2} + 2m^{2}n + 3mn^{2} - 6mn - m^{2} - m}{4}, & \text{if } n \text{ is odd} \\ \frac{3m^{2}n^{2} + 2m^{2}n + 3mn^{2} - 6mn}{4}, & \text{if } n \text{ is even.} \end{cases}$$

Proof. Let $v_{i,j}$, $1 \le i \le m$, $1 \le j \le n$ be the vertices of $K_m \times P_n$ where the induced subgraph of $\{v_{i,j}: 1 \le i \le m\}$ is the j^{th} copy of K_m and the induced subgraph of $\{v_{i,j}: 1 \le j \le n\}$ is the i^{th} copy of P_n . In this graph,

$$ecc(v_{i,j}) = \begin{cases} n-j+1, & 1 \le j \le \lceil \frac{n}{2} \rceil \\ ecc(v_{i,n-j+1}), & \lceil \frac{n}{2} \rceil + 1 \le j \le n \text{ for all } 1 \le i \le m. \end{cases}$$

$$deg(v_{i,1}) = m = deg(v_{i,n}), \text{ for all } 1 \le i \le m \text{ and } 1 \le i \le m \text{ and } 1 \le i \le m.$$

$$deg(v_{i,j}) = m+1, 2 \le j \le n-1 \text{ and } 1 \le i \le m.$$

$$\xi^{c}(K_{m} \times P_{n}) = \sum_{v \in V(K_{m} \times P_{n})} deg(v)ecc(v)$$

$$= 2 \sum_{i=1}^{m} deg(v_{i,1})ecc(v_{i,1}) + \sum_{i=1}^{m} \sum_{j=2}^{n-1} deg(v_{i,j})ecc(v_{i,j})$$

$$= 2m \sum_{i=1}^{m} ecc(v_{i,1}) + (m+1) \sum_{i=1}^{m} \sum_{j=2}^{n-1} ecc(v_{i,j})$$

$$= 2m^{2}n + (m+1) \sum_{i=1}^{m} \sum_{j=2}^{n-1} ecc(v_{i,j}).$$

Case 1. n is odd.

In this case,

$$\sum_{i=1}^{m} \sum_{j=2}^{n-1} ecc(v_{i,j}) = 2 \sum_{i=1}^{m} \sum_{j=2}^{\frac{n-1}{2}} ecc(v_{i,j}) + \sum_{i=1}^{m} ecc(v_{i,\frac{n+1}{2}})$$

$$= 2 \sum_{i=1}^{m} \sum_{j=2}^{\frac{n-1}{2}} (n-j+1) + \sum_{i=1}^{m} \frac{n+1}{2}$$

$$= 2\sum_{i=1}^{m} \left[\sum_{j=2}^{\frac{n-1}{2}} (n+1) - \sum_{j=2}^{\frac{n-1}{2}} j \right] + m \left(\frac{n+1}{2} \right)$$

$$= 2m \left[\left(\frac{n-3}{2} \right) (n+1) - \frac{\left(\frac{n-1}{2} \right) \left(\frac{n+1}{2} \right) + 1}{2} \right] + m \left(\frac{n+1}{2} \right)$$

$$= \frac{m}{4} [3n^2 - 6n - 1].$$
Therefore, $\xi^c(K_m \times P_n) = 2m^2n + (m+1)\frac{m}{4} (3n^2 - 6n - 1)$

$$= \frac{3m^2n^2 + 2m^2n + 3mn^2 - 6mn - m^2 - m}{4}.$$

Case 2. n is even.

In this case,

$$\sum_{i=1}^{m} \sum_{j=2}^{n-1} ecc(v_{i,j}) = 2 \sum_{i=1}^{m} \sum_{j=2}^{\frac{n}{2}} ecc(v_{i,j})$$

$$= 2 \sum_{i=1}^{m} \sum_{j=2}^{\frac{n}{2}} (n-j+1)$$

$$= 2 \sum_{i=1}^{m} \left[\sum_{j=2}^{\frac{n}{2}} (n+1) - \sum_{j=2}^{\frac{n}{2}} j \right]$$

$$= 2m \left[\left(\frac{n}{2} - 1 \right) (n+1) - \frac{\frac{n}{2} \left(\frac{n}{2} + 1 \right)}{2} + 1 \right]$$

$$= \frac{m}{4} [3n^2 - 6n].$$
Therefore, $\xi^c(K_m \times P_n) = 2m^2n + (m+1) \left[\frac{m}{4} (3n^2 - 6n) \right]$

$$= \frac{8m^2n + (m^2 + m)(3n^2 - 6n)}{4}$$

$$= \frac{3m^2n^2 + 2m^2n + 3mn^2 - 6mm}{4}.$$

Theorem 2.7. For any $m \ge 1$ and $n \ge 3$, $\xi^c(K_m \times C_n) = mn(m+1)(\lfloor \frac{n}{2} \rfloor + 1)$.

Proof. In $K_m \times C_n$, $ecc(v) = \lfloor \frac{n}{2} \rfloor + 1$ and deg(v) = m + 1, for all $v \in V(K_m \times C_n)$.

Hence,
$$\xi^{c}(K_{m} \times C_{n}) = \sum_{v \in V(K_{m} \times C_{n})} deg(v)ecc(v)$$

$$= (m+1) \sum_{v \in V(K_{m} \times C_{n})} \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right)$$

$$= mn(m+1) \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right).$$

Theorem 2.8. $\xi^c(K_m \times K_n) = 2mn(m+n-2)$ for any $m, n \geq 2$.

Proof. Since $K_m \times K_n \in F_{22}$ and each vertex is of degree m + n - 2, the result follows.

Theorem 2.9. Let G be the graph obtained by identifying a vertex of the cycles C_m and C_n . Then

$$\xi^c(G) = \left\{ \begin{array}{ll} m^2 + n^2 + mn - m - n - 1 & \text{if m and n are odd} \\ m^2 + n^2 + mn - m & \text{if m is odd and n is even} \\ m^2 + n^2 + mn - n & \text{if m is even and n is odd} \\ m^2 + n^2 + mn & \text{if m and n is even.} \end{array} \right.$$

Proof. Let u_1, u_2, \ldots, u_m and v_1, v_2, \ldots, v_n be the vertices of the cycles C_m and C_n respectively and u_1 and v_1 are identified as a single vertex in G. Assume that $m \leq n$. In G,

$$ecc(u_i) = \begin{cases} \lfloor \frac{n}{2} \rfloor + i - 1, & 1 \le i \le \lfloor \frac{m}{2} \rfloor + 1 \\ ecc(u_{m-i}), & \lfloor \frac{m}{2} \rfloor + 2 \le i \le m \end{cases} \text{ and }$$

$$ecc(v_i) = \begin{cases} \lfloor \frac{n}{2} \rfloor, & 2 \le i \le \lfloor \frac{n}{2} \rfloor - \lfloor \frac{m}{2} \rfloor + 1 \\ i + \lfloor \frac{m}{2} \rfloor - 1, & \lfloor \frac{n}{2} \rfloor - \lfloor \frac{m}{2} \rfloor + 2 \le i \le \lfloor \frac{n}{2} \rfloor + 1 \\ ecc(v_{n-i}), & \lfloor \frac{n}{2} \rfloor + 2 \le i \le n. \end{cases}$$

$$Also, deg(u_i) = \begin{cases} 4, & i = 1 \\ 2, & 2 \le i \le m \end{cases} \text{ and }$$

$$deg(v_i) = 2, \ 2 \le i \le n$$

Therefore,
$$\xi^c(G) = \sum_{v \in V(G)} deg(v)ecc(v)$$

= $4ecc(u_1) + 2\sum_{i=2}^m ecc(u_i) + 2\sum_{i=2}^n ecc(v_i)$.

Case 1. m and n are odd. In this case,

$$\xi^{c}(G) = 4\left(\frac{n-1}{2}\right) + 4\sum_{i=2}^{\frac{m+1}{2}} \left(\frac{n-3}{2} + i\right) + 4\sum_{i=2}^{\frac{n-m}{2}+1} \left(\frac{n-1}{2}\right)$$

$$+ 4\sum_{i=\frac{n-m}{2}+2}^{\frac{n+1}{2}} \left(\frac{m-3}{2} + i\right)$$

$$= 4\left(\frac{n-1}{2}\right) + 4\left(\frac{m-1}{2}\right)\left(\frac{n-3}{2}\right) + 4\frac{\left(\frac{m+1}{2}\right)\left(\frac{m+3}{2}\right)}{2} - 4$$

$$+ 4\left(\frac{n-m}{2}\right)\left(\frac{n-1}{2}\right) + 4\left(\frac{m-1}{2}\right)\left(\frac{m-3}{2}\right)$$

$$+ 4\left[\frac{\left(\frac{n+1}{2}\right)\left(\frac{n+3}{2}\right)}{2} - \frac{\left(\frac{n-m}{2}+1\right)\left(\frac{n-m}{2}+2\right)}{2}\right]$$

$$= m^{2} + n^{2} + mn - m - n - 1.$$

Case 2. m is odd and n is even. In this case,

$$\begin{split} \xi^{c}(G) &= 4\left(\frac{n}{2}\right) + 4\sum_{i=2}^{\frac{m+1}{2}} \left(\frac{n-2}{2} + i\right) + 4\sum_{i=2}^{\frac{n-m+3}{2}} \left(\frac{n}{2}\right) \\ &+ 4\sum_{i=\frac{n-m+5}{2}}^{\frac{n}{2}} \left[\left(\frac{m-3}{2}\right) + i\right] + 2\left(\frac{m+n-1}{2}\right) \\ &= 2n + 4\left(\frac{m-1}{2}\right)\left(\frac{n-2}{2}\right) + 4\frac{\left(\frac{m+1}{2}\right)\left(\frac{m+3}{2}\right)}{2} - 4 + 4\left(\frac{n-m+1}{2}\right)\left(\frac{n}{2}\right) \\ &+ 4\left(\frac{m-3}{2}\right)\left(\frac{m-3}{2}\right) + 4\left[\frac{\left(\frac{n}{2}\right)\left(\frac{n+2}{2}\right)}{2} - \frac{\left(\frac{n-m+3}{2}\right)\left(\frac{n-m+5}{2}\right)}{2}\right] + (n+m-1) \\ &= m^{2} + n^{2} + mn - m. \end{split}$$

Case 3. m is even and n is odd.

In this case,

$$\xi^{c}(G) = 4\left(\frac{n-1}{2}\right) + 4\sum_{i=2}^{\frac{m}{2}} \left(\left(\frac{n-3}{2}\right) + i\right) + 2\left(\frac{m+n-1}{2}\right) + 4\sum_{i=2}^{\frac{n-m+1}{2}} \left(\frac{n-1}{2}\right) + 4\sum_{i=2}^{\frac{n-m+1}{2}} \left(\frac{m-2}{2} + i\right)$$

$$= m^{2} + n^{2} + mn - n.$$

Case 4. m is even and n is odd.

In this case,

$$\begin{split} \xi^c(G) &= 4\left(\frac{n}{2}\right) + 4\sum_{i=2}^{\frac{m}{2}} \left[\left(\frac{n-2}{2}\right) + i\right] + 2\left(\frac{m+n}{2}\right) + 4\sum_{i=2}^{\frac{n-m+2}{2}} \left(\frac{n}{2}\right) \\ &+ 4\sum_{i=\frac{n-m+4}{2}}^{\frac{n}{2}} \left(\frac{m-2}{2} + i\right) + 2\left(\frac{m+n}{2}\right) \\ &= m^2 + n^2 + mn. \end{split}$$

References

- [1] A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235 (2011), 4561-4566.
- [2] B. Eskender and E. Vumar, Eccentric connectivity index and eccentric distance sum of some graph operations, *Transactions on Combinatorics*, **2**(1) (2013), 103–111.
- [3] Guihaiyu and Lihua Feng, On eccentric connectivity index of graphs, MATCH COMMUN. Math. Comput. Chem., 69 (2013), 611–628.
- [4] I. Gutman, R. Geez and J. Rada, Wiener index of eulerian graphs, Discrete Appl. Math., 162 (2014), 247–250.

- [5] H. Hua, S. Zhang and K. Xu, Further results on the eccentric distance sum, Discrete Appl. Math., 160 (2012), 170–180.
- [6] A. Ilic and I. Gutman, Eccentric connectivity index of chemical trees, MATCH. COMMUN. MATH. COMPUT. CHEM., 65 (2011), 731–744.
- [7] KM. Kathiresan and S. Arockiara, On the wiener index of generalised complimentary prism, Bull. Inst. Combin. Appl., 59 (2010), 31-45.
- [8] B. Zhou and Dee, On eccentric connectivity index, MATCH COMMUN. Math. Comput. Chem., 63 (2010) 181-198.