(λ, μ) - Fuzzy Subnear - Rings and (λ, μ) - Fuzzy Ideals of Near - Rings

R. Ezhilarasi

Department of Mathematics (HAS), Arunai Engineering College, Tiruvannamalai, Tamil Nadu, India - 606 603. rearasi@gmail.com

S Sriram

Mathematics Section, Faculty of Engineering and Technology,
Annamalai University, Annamalainagar, Tamil Nadu, India - 608 002.

sriramcdm@gmail.com

Abstract

In this paper, we introduce the notions of (λ, μ) -fuzzy subnear-ring and (λ, μ) -fuzzy ideal of near-rings and find more generalized concepts than those introduced by others. The characterization of such (λ, μ) -fuzzy ideals are also obtained.

Key words: (λ, μ) -fuzzy subnear-ring, (λ, λ) -fuzzy ideal...

Mathematics Subject Classification: 16¥30, 03E72.

1. Introduction

The notion of a fuzzy set was introduced by Zadeh [7] in 1965. Rosenfeld [3] introduced the notion of fuzzy subgroup in 1971. The notions of fuzzy subnear-ring and fuzzy ideal of near-rings were introduced by Salah Abou-Zaid [4]. In particular, Bhakat and Das introduced the concept of $(\in, \in vq)$ - fuzzy subgroups [1], $(\in, \in vq)$ - fuzzy subrings and $(\in, \in vq)$ -fuzzy ideals [2]. Yuan et al. [6] introduced the concept of fuzzy subgroup with thresholds of a group (also called a (λ, μ) -fuzzy subgroup). Yao introduced the notions of (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals of rings [5] which can be regarded as a generalization of Bhakat and Das's correspondence concepts.

In this paper, the notions of (λ, μ) -fuzzy subnear-ring and (λ, μ) -fuzzy ideal of nearrings are introduced and find more generalized concepts than those introduced by others. We also obtained the characterization of such (λ, μ) -fuzzy ideals.

2. Preliminaries

In this section, we shall present basic definitions and results required in the sequel. By a near-ring we mean a non-empty set N with two binary operations "+" and "•" satisfying the following axioms:

(i) (N, +) is a group,

(ii) (N, \bullet) is a semigroup,

(iii)
$$(x + y) \cdot z = x \cdot z + y \cdot z$$
 for all $x, y, z \in N$.

If P and Q are two non-empty subsets of N, we define

$$PQ = \{ab \mid a \in P, b \in Q\} \text{ and } P * Q = \{a(b+i) - ab \mid a, b \in P, i \in Q\}.$$

A subgroup M of a near-ring N is called a subnear-ring of N if $MM \subseteq M$.

A subset I of a near-ring N is called an ideal of N if

- (i) (I, +) is a normal subgroup of (N, +),
- (ii) $IN \subseteq I$,
- (iii) $a(b+i)-ab \in I$ for all $a, b \in N$ and $i \in I$, that is, $N*I \subset I$.

A normal subgroup R of (N, +) with (ii) is called a right ideal of N while a normal subgroup L of (N, +) with (iii) is called a left ideal of N.

We now review some fuzzy logic concepts.

A function A from a nonempty set X to the unit interval [0, 1] is called a fuzzy subset of X[7].

A map f from a near-ring N_1 into a near-ring N_2 is called a homomorphism if f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for all $x, y \in N_1$.

Let f be any function from a set S into a set T, A be any fuzzy subset of S and B be any fuzzy subset of T. The image of A under f, denoted by f(A), is a fuzzy subset of T defined by

$$(f(A))(y) = \begin{cases} \sup A(x) \text{ if } f^{-1}(y) = \phi \\ x \in f^{-1}(y) \\ 0 \text{ otherwise, where } y \in T. \end{cases}$$

The preimage of B under f, symbolized by $f^{-1}(B)$, is a fuzzy subset of S defined by $(f^{-1}(B))(x) = B(f(x))$ for all $x \in S$.

Throughout this paper, N will denote a near-ringumless otherwise specified. We denote by K_i , the characteristic function of a subset I of N. The characteristic function of N is denoted by N, that is, $N: N \to [0, 1]$ mapping every element of N to 1.

Definition 2.1 [4]

A fuzzy subset A of N is said to be a fuzzy subnear-ring of N if for all $x, y \in N$, (i) $A(x - y) \ge \min\{A(x), A(y)\}$, (ii) $A(xy) \ge \min\{A(x), A(y)\}.$

Definition 2.2 [4]

A fuzzy subset A of N is said to be a fuzzy ideal of N if

- (i) A is a fuzzy subnear-ring of N,
- (ii) $A(y+x-y) \ge A(x)$ for all $x, y \in N$,
- (iii) $A(xy) \ge A(x)$ for all $x, y \in N$,
- (iv) $A(a(b+i)-ab) \ge A(i)$ for all $a, b, i \notin N$.

A fuzzy subset with (i), (ii) and (iii) is called a fuzzy right ideal of N whereas a fuzzy subset with (i), (ii) and (iv) is called a fuzzy left ideal of N.

Definition 2.3

A fuzzy subset A of N is said to be an $(\in \lor q)$ -fuzzy subnear-ring of N if for all $x, y \in N$.

- (i) $A(x + y) \ge \min\{A(x), A(y), 0.5\},\$
- (ii) $A(-x) \ge \min\{A(x), 0.5\},\$
- (iii) $A(xy) \ge \min\{A(x), A(y), 0.5\}.$

Definition 2.4

A fuzzy subset A of N is said to be an $(\in \in \lor q)$ -fuzzy ideal of N if

- (i) A is an $(\in, \in \vee q)$ -fuzzy subnear-ring of N,
- (ii) $A(y + x y) \ge \min\{A(x), 0.5\}$ for all $x, y \in N$,
- (iii) $A(xy) \ge \min\{A(x), 0.5\}$ for all $x, y \in N$,
- (iv) $A(x(y+i)-xy) \ge \min\{A(i), 0.5\}$ for all $x, y, i \in N$.

Definition 2.5. [6]

Let λ , $\mu \in [0, 1]$ and $\lambda < \mu$. Let A be a fuzzy subset of a group G. Then A is called a fuzzy subgroup with thresholds of G or a (λ, μ) -fuzzy subgroup of G if for all $x, y \in G$,

- (i) $A(xy) \vee \lambda \geq A(x) \wedge A(y) \wedge \mu$,
- (ii) $A(x^{-1}) \vee \lambda \geq A(x) \wedge \mu$.

3. (λ, μ) -fuzzy subnear-rings and (λ, μ) -fuzzy ideals

Based on the concepts of fuzzy subgroups with thresholds were introduced by Yuan [6], (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals were introduced by Yao [5], we introduce the following concept. In the following discussion, we always assume that $0 \le \lambda < \mu \le 1$.

Definition 3.1

A fuzzy subset A of N is said to be a (λ, μ) -fuzzy subnear-ring of

N if for all $x, y \in N$,

(i)
$$A(x + y) \lor \lambda \ge A(x) \land A(y) \land \mu$$
,

(ii)
$$A(-x) \lor \lambda \ge A(x) \land \mu$$
,

(iii)
$$A(xy) \lor \lambda \ge A(x) \land A(y) \land \mu$$
.

Theorem 3.2

A fuzzy subset A of N is said to be a (λ, μ) -fuzzy subnear-ring of N if and only if for all $x, y \in N$,

(i)
$$A(x-y) \lor \lambda \ge A(x) \land A(y) \land \mu$$
,

(ii)
$$A(xy) \lor \lambda \ge A(x) \land A(y) \land \mu$$
.

Remark 3.3

A fuzzy subnear-ring is a (λ, μ) -fuzzy subnear-ring with $\lambda = 0$ and $\mu = 1$, and a $(\in, \in \vee q)$ - fuzzy subnear-ring is a (λ, μ) -fuzzy subnear-ring with $\lambda = 0$ and $\mu = 0.5$.

Definition 3.4

A fuzzy subset A of N is said to be a (λ, μ) -fuzzy ideal of N if

- (i) A is a (λ, μ) -fuzzy subnear-ring of N.
- (ii) $A(y + x y) \lor \lambda \ge A(x) \land \mu$ for all $x, y \in N$,
- (iii) $A(xy) \lor \lambda \ge A(x) \land \mu$ for all $x, y \in N$,
- (iv) $A(a(b+i)-ab) \lor \lambda \ge A(i) \land \mu$ for all $a, b, i \in N$.

A fuzzy subset with (i), (ii) and (iii) is called a (λ, μ) -fuzzy right ideal of N whereas a fuzzy subset with (i), (ii) and (iv) is called a (λ, μ) -fuzzy left ideal of N.

Remark 3.5

A fuzzy ideal is a (0, 1) -fuzzy ideal and a $(, \lor q)$ -fuzzy ideal is a (0, 0.5) -fuzzy ideal.

Theorem 3.6

Let $\{Ai : i \in J\}$ be any family of (λ, μ) -fuzzy subnear-rings (ideals) of N. Then $A = \bigcap Ai$ is a (λ, μ) -fuzzy subnear-ring (ideal) of N.

Theorem 3.7

A non-empty subset I of N is a subnear-ring (ideal) of N if and only if K_1 is a (λ, μ) -fuzzy subnear-ring (ideal) of N.

Proof:

We prove the result for ideals. Let I be an ideal of N. It is clear that K_I is a fuzzy ideal of N. By Remark 3.5, K_I is a (λ, μ) -fuzzy ideal of N. Conversely, let K_I be a (λ, μ) -fuzzy ideal of N. For any $x, y \in I$, we have $K_I(x-y) \lor \lambda \ge K_I(x) \land K_I(y) \land \mu \ge 1 \land 1 \land \mu = \mu$, and so $K_I(x-y) = 1$. Thus $x-y \in I$.

Let $a \in N$ and $x \in I$. Then $K_I(a + x - a) \lor \lambda \ge K_I(x) \land \mu \ge 1 \land \mu = \mu$, and thus $K_I(a + x - a) = 1$. This shows that $a + x - a \in I$, and therefore (I, +) is a normal subgroup of (N, +).

Now let $a \in N$ and $x \in I$. Then $K_I(xa) \lor \lambda \ge K_I(x) \land \mu \ge 1 \land \mu = \mu$, and so $xa \in I$. Finally, let $a, b \in N$ and $i \in I$. Then

 $K_i(a(b+i)-ab) \lor \lambda \ge K_i(i) \land \mu \ge 1 \land \mu = \mu$, which implies that $a(b+i)-ab \in I$. Consequently, I is an ideal of N.

Theorem 3.8

Let $f: N_1 \to N_2$ be an onto homomorphism of near-rings and let A be a (λ, μ) -fuzzy subnear-ring (ideal) of N_1 . Then f(A) is a (λ, μ) -fuzzy subnear-ring (ideal) of N_2 .

Proof

We prove the result in the case of (λ, μ) -fuzzy ideal.

For all $y_1, y_2 \in N_2$, we have

$$f(A)(y_1 - y_2) \lor \lambda = \sup\{A(x_1 - x_2)|f(x_1 - x_2) = y_1 - y_2\} \lor \lambda$$

$$= \sup\{A(x_1 - x_2) \lor \lambda|f(x_1 - x_2) = y_1 - y_2\}$$

$$\geq \sup\{A(x_1) \land A(x_2) \land \mu|f(x_1) = y_1, f(x_2) = y_2\}$$

$$= \sup\{A(x_1) \land |f(x_1) = y_1\} \land \sup\{A(x_2)|f(x_2) = y_2\} \land \mu$$

$$= f(A)(y_1) \land f(A)(y_2) \land \mu,$$

and

$$f(A)(y_{1}y_{2}) \vee \lambda = \sup\{A(x_{1}x_{2})|f(x_{1}x_{2}) = y_{1}y_{2}\} \vee \lambda$$

$$= \sup\{A(x_{1}x_{2}) \vee \lambda|f(x_{1}x_{2}) = y_{1}y_{2}\}$$

$$\geq \sup\{A(x_{1}) \wedge A(x_{2}) \wedge \mu|f(x_{1}) = y, f(x_{2}) = y_{2}\}$$

$$= \sup\{A(x_{1}) \wedge |f(x_{1}) = y_{1}\} \wedge \sup\{A(x_{2})|f(x_{2}) = y_{2}\} \wedge \mu$$

$$= f(A)(y_{1}) \wedge f(A)(y_{2}) \wedge \mu.$$

Similarly, we have

$$\begin{split} f(A)(y_{_{2}}+y_{_{1}}-y_{_{2}}) &\vee \lambda \geq f(A)(y_{_{1}}) \wedge \mu, \\ f(A)(y_{_{1}}y_{_{3}}) &\vee \lambda \geq f(A)(y_{_{1}}) \wedge \mu, \\ f(A)(y_{_{1}}(y_{_{2}}+y_{_{4}})-y_{_{1}}y_{_{2}}) &\vee \lambda \geq f(A)(y_{_{1}}) \wedge \mu \text{ for all } y_{_{1}}, y_{_{2}}, y_{_{3}}, y_{_{4}} \in N_{_{2}}. \end{split}$$
 Therefore, $f(A)$ is a (λ, μ) -fuzzy ideal of $N_{_{2}}$.

Theorem 3.9

Let $f: N_1 \to N_2$ be a homomorphism of near-rings and let B be a (λ, μ) -fuzzy subnear-ring (ideal) of N_2 . Then $f^{-1}(B)$ is a (λ, μ) -fuzzy subnear-ring (ideal) of N_1 .

Proof

We prove the result in the case of (λ, μ) -fuzzy ideal.

For all $x_1, x_2 \in N_1$, we have

$$f^{-1}(B)(x_{1} - x_{2}) \lor \lambda = B(f(x_{1} - x_{2})) \lor \lambda$$

$$= B(f(x_{1}) - f(x_{2})) \lor \lambda$$

$$\geq B(f(x_{1})) \land B(f(x_{2})) \land \mu$$

$$= f^{-1}(B)(x_{1}) \land f^{-1}(B)(x_{2}) \land \mu,$$

and

$$f^{-1}(B)(x_{1}x_{2}) \vee \lambda = B(f(x_{1}x_{2})) \vee \lambda$$

$$= B(f(x_{1})f(x_{2})) \vee \lambda$$

$$\geq B(f(x_{1})) \wedge B(f(x_{2})) \wedge \mu$$

$$= f^{-1}(B)(x_{1}) \wedge f^{-1}(B)(x_{2}) \wedge \mu.$$

Similarly, we have

$$f^{-1}(B)(x_2 + x_1 - x_2) \vee \lambda = f^{-1}(B)(x_1) \wedge \mu,$$

$$f^{-1}(B)(x_1x_3) \vee \lambda = f^{-1}(B)(x_1) \wedge \mu,$$

$$f^{-1}(B)(x_1(x_2 + x_4) - x_1x_2) \vee \lambda = f^{-1}(B)(x_4) \wedge \mu \text{ for all } x_1, x_2, x_3, x_4 \in N_1.$$

Therefore, $f^{-1}(B)$ is a (λ, μ) -fuzzy ideal of N_1 .

References

- [1] S.K.Bhakat, P.Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996) 359-368.
- [2] S.K.Bhakat, P.Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81 (1996) 383-393.
- [3] A.Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971) 512-517.

- [4] Salah Abou-Zaid, On fuzzy subrings and ideals, Fuzzy Sets and Systems, 44 (1991) 139-146.
- [5] B. Yao, (λ, μ) -fuzzy subrings and (λ, μ) -fuzzy ideals, The Journal of Fuzzy Mathematics, 15(4) (2007) 981-987.
- [6] X. Yuan, C.Zhang, Y.Ren, Generalized fuzzy groups and many-valued implications, Fuzzy Sets and Systems, 138 (2003) 205-211.
- [7] L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.