On Regular Pre-Semiclosed Sets In Bitopological Spaces

K. Indirani

Department of Mathematics, Nirmala College for Women, Coimbatore, TN, India

G. Sindhu

Department of Mathematics with CA, Nirmala College for Women, Coimbatore, TN, India. sindhukannan23@gmail.com

Abstract

The generalized closed sets in point set topology have been found considerable interest among general topologists. Veerakumar[8] introduced and investigated pre-semi- closed sets and Anitha[1] introduced pgpr closed sets. P.Thangavelu[7] introduced and investigated the concept of regular pre-semiclosed sets in topological spaces. In this article the concept of regular pre-semiclosed sets and its relationships with other generalized sets are extended to bitopological spaces.

Keywords: (i,j) regular pre-semi closed, pairwise rps-continuous, pairwise pre rps-continuous, pairwise rps-irresolute, pairwise rps-closed, pairwise pre rps-closed ,RPSO-connected , pairwise RPSO-compact.

1.Introduction

Levine[4] introduced generalized closed (briefly g-closed) sets in topology. Researchers in topology studied several versions of generalized closed sets. In this paper the concept of regular pre-semiclosed (briefly rps-closed) set in bitopological spaces is introduced and their properties are investigated.

2.Preliminaries

Let (X, τ_1, τ_2) or simply X denotes a bitopological space. For any subset $A \subseteq X$, τ_i -int(A) and τ_i -cl(A) denote the interior and closure of a set A with respect to the topology τ_i , respectively. A^C denotes the complement of A in X unless explicitly stated.

We recall the following definitions.

Definition 2.1. A subset A of (X, τ_1, τ_2) is called

- (i) (i,j)-semi-open [5] in (X,τ_1,τ_2) if there exists a τ_i -open set U with $U\subseteq A\subseteq \tau_j$ -cl(U).
- (ii) (i,j) -pre-open [2] in (X,τ_1,τ_2) if there exists a τ_i -open set U with $A\subseteq U\subseteq \tau_j$ -cl(A).
- (iii) (i,j) -semi-pre-open or (i,j) - β -open [3] in (X, τ_1 , τ_2) if there exists an (i,j) -pre-open set U in (X, τ_1 , τ_2) with U \subseteq A $\subseteq \tau_j$ -cl(U) that is if A $\subseteq \tau_j$ -cl(τ_i -int(τ_j -clA)).
- (iv) (i,j) - α -open [2], [6] in (X, τ_1 , τ_2) if A $\subseteq \tau_i$ -int (τ_j -cl(τ_i -intA)).

The complement of an (i,j) -semi-open set is (i,j) semi-closed. The (i,j) -pre-closed sets, (i,j) -semi-preclosed sets and (i,j) - α -closed sets will be analogously defined.

Theorem 2.2. The following results hold in a bitopological space.

- (i) The union of an arbitrary collection of (i,j) -semi-open sets is (i,j) -semi-open;
- (ii) The intersection of two (i,j) -semi-open sets is not (i,j) -semi-open;
- (iii) The intersection of an arbitrary collection of (i,j)-semi-closed sets is (i,j)-semi-closed and
- (iv) The union of two (i,j) -semi-closed sets is not (i,j)-semi-closed.

Jelic [2], Khedr et al. [3] and Sampath Kumar[6] respectively characterized (i,j) -preopen sets, (i,j) semi-pre-open sets and (i,j) - α -open sets. The intersection of all (i,j) -semi-closed sub sets of (X,τ_1,τ_2) containing a subset A of X is the (i,j) -semi-closure of A, denoted by (i,j) -sclA. The union of all (i,j) -semiopen sets contained in A is called the (i,j) -semi-interior of A, denoted by (i,j) -sintA. The (i,j) -pre-closure, (i,j) semi-pre-closure, (i,j) - α -closure, (i,j) -pre-interior, (i,j) -semi-pre-interior and (i,j) - α -interior will be respectively denoted by (i,j) -pclA, (i,j) -spclA, (i,j) - α -clA, (i,j) -pintA, (i,j) -spintA and (i,j) - α -intA.

3. Regular pre-semiclosed sets in Bitopological Spaces

Definition 3.1: A subset A of a space(X, τ_1 , τ_2) is called (i,j) regular pre-semi closed (briefly (i,j)-rps-closed) if τ_i -spclA \subseteq U, whenever A \subseteq U and U is τ_i -rg open in (X, τ_1 , τ_2).

The class of all (i,j)-rps-closed sets in a bitopological space (X,τ_1,τ_2) is denoted by (i,j)-RPS-C (X,τ_1,τ_2)

Remark 3.2: The complement of (i,j)-rps-closed set is (i,j)-rps-open set.

Proposition 3.3 (i) Every τ_{j} -closed set is (i,j)-rps-closed.

- (ii) Every τ_i -semi-pre-closed set is (i,j)-rps-closed.
- (iii) Every (i,j)-pgpr-closed set is (i,j)-rps-closed.
- (iv) Every τ_i-pre-closed set is (i,j)-rps-closed.
- (v) Every τ_i - α -closed set is (i,j)-rps-closed.
- (vi) Every τ_i -regular closed set is (i,j)-rps-closed.

The reverse implications are not true as shown in the examples:

Example 3.4: Consider the bitopological space (X,τ_1,τ_2) with $X=\{a,b,c,d\}$, $\tau_1=\{\phi,\{a\},X\}$ and $\tau_2=\{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$, then

- (i) {a} is (i,j)-rps-closed but not τ_j -closed.
- (ii) $\{b,c,d\}$ is (i,j)-rps-closed but not τ_j -semi-pre-closed.

Example 3.5: Consider the bitopological space (X,τ_1,τ_2) with $X=\{a,b,c\}$, $\tau_1=\{\phi,\{a\},X\}$ and $\tau_2=\{\phi,\{a\},\{c\},\{a,c\},X\}$, then $\{a\}$ and $\{c\}$ are(i,j)-rps-closed but not (i,j)-pgpr-closed, τ_j - α -closed and τ_j -regular closed.

Proposition 3.6: (i) Every (i,j)-rps-closed set is (i,j)-pre-semi-closed.

- (ii) Every (i,j)-rps-closed set is (i,j)-gspr-closed.
- (iii) Every (i,j)-rps-closed set is (i,j)-gsp-closed.

Proof

(i) Let A be a (i,j)-rps-closed subset of a space (X,τ_1,τ_2) . Let $A\subseteq U$ where U is τ_i -g-open. Since every τ_i -g-open set is τ_i -rg-open and since A is(i,j)-rps-closed, A is (i,j)-pre-semi-closed.

- (ii) Let A be a (i,j)-rps-closed subset of a space (X,τ_1,τ_2) . Let $A\subseteq U$ and U is τ_i -regular-open. Since every τ_i -regular-open set is τ_i -rg open and since A is (i,j)-rps-closed, τ_j -spcl $A\subseteq U$. Therefore A is (i,j)-gspr-closed.
- (iii) Let A be a (i,j)-rps-closed subset of a space (X,τ_1,τ_2) . Let $A\subseteq U$ and U is τ_i -open. Since every τ_i -open set is τ_i -g-open and since every τ_i -g-open set is τ_i -rg-open, τ_j -spcl $A\subseteq U$ and hence A is (i,j)-gsp-closed.

The reverse implications are not true as shown in the examples:

Example 3.7 In Example 3.4, {a,b} is (i,j)-pre-semi-closed but not (i,j)-rps-closed.

In Example 3.5, {a,c} is (i,j)- gspr-closed and (i,j)-gsp-closed but not (i,j)-rps-closed.

The concept of (i,j)-gs-closed, (i,j)-g-closed, (i,j)-gp-closed, (i,j)-rg-closed, (i,j)-ag-closed, (i,j)-sg-closed, (i,j)-ga-closed, (i,j)-wg-closed, (i,j)-wg-closed, (i,j)-gpr-closed sets are independent with the concept of (i,j)-rps-closed as shown in the following examples.

Example 3.8 Consider the bitopological space (X,τ_1,τ_2) with $X=\{a,b,c\}$, $\tau_1=\{\phi,\{a\},X\}$ and $\tau_2=\{\phi,\{a,b\},X\}$, then $\{a,b\}$ is (i,j)-gs-closed but not (i,j)-rps-closed and $\{a\}$ is (i,j)-rps-closed but not (i,j)-gs-closed.

Example 3.9

In Example 3.5, {a} is (i,j)-rps-closed but not (i,j)-g-closed, (i,j)-gp-closed, (i,j)-αg-closed and (i,j)-wg-closed. Also {a,c} is (i,j)-g-closed, (i,j)-gp-closed, (i,j)-αg-closed and (i,j)-wg-closed but not(i,j)-rps-closed.

Example 3.10 Consider the bitopological space (X,τ_1,τ_2) with $X=\{a,b,c\}$, $\tau_1=\{\phi,\{a\},\{c\},\{a,c\},X\}$ and $\tau_2=\{\phi,\{a\},X\}$, then $\{c\}$ is (i,j)-rps-closed but not (i,j)-rg-closed and $\{a,b\}$ is (i,j)-rps-closed but not (i,j)-g α -closed but not (i,j)-rps-closed.

Example 3.11 In Example 3.10 {a,b} is (i,j)-rps-closed but not(i,j)-sg-closed. Consider the bitopological space (X,τ_1,τ_2) with $X=\{a,b,c\}$, $\tau_1=\{\phi,\{c\},\{a,b\},X\}$ and $\tau_2=\{\phi,\{a\},\{a,c\},X\}$, then {a,c} is (i,j)-sg-closed but not (i,j)-rps-closed.

Example 3.12 In Example 3.5 {a,c} is (i,j)-rwg-closed but not(i,j)-rps-closed.

In Example 3.10 $\{a,c\}$ is (i,j)-rps-closed but not(i,j)-rwg-closed.

4. Pairwise rps-continuous function

Definition 4.1 A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (a) pairwise semi-pre-continuous if $f^{-1}(U)$ is (i,j)-semi pre closed in X, for each σ_j -closed set U in Y.
- (b) pairwise pgpr -continuous if $f^{-1}(U)$ is (i,j)- pgpr closed in X, for each σ_j -closed set U in Y.
- (c) pairwise pre -continuous if $f^{-1}(U)$ is (i,j)-pre closed in X, for each σ_j -closed set U in Y.
- (d) pairwise α -continuous if $f^{-1}(U)$ is $(i,j)-\alpha$ closed in X, for each σ_i -closed set U in Y.
- (e) pairwise pre-semi-continuous if $f^{-1}(U)$ is (i,j)-pre-semi closed in X, for each σ_j -closed set U in Y.
- (f) pairwise gspr-continuous if $f^{-1}(U)$ is (i,j)-gspr closed in X, for each σ_j -closed set U in Y.
- (g) pairwise gsp continuous if $f^{-1}(U)$ is (i,j)-gsp closed in X, for each σ_j -closed set U in Y.

Definition 4.2 A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise rps-continuous if $f^{-1}(U)$ is

(i,j)-rps closed in X, for each σ_j -closed set U in Y.

Theorem 4.3 Every pairwise continuous function is pairwise rps-continuous.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise continuous. Let U be a σ_j -closed set in Y. Then $f^{-1}(U)$ is τ_j -closed in X. Since every τ_j -closed set is (i,j)-rps closed, we have f is pairwise rps-continuous.

The converse of the above theorem need not be true in general. The next example supports our claim.

Example 4.4: Consider an identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ with $X=Y=\{a,b,c\}, \tau_1 = \{\phi, \{a\}, X\}, \tau_2 = \{\phi, \{a\}, \{c\}, \{a,c\}, X\}, \sigma_1 = \{\phi, \{a\}, \{c\}, \{a,c\}, Y\} \text{ and } \sigma_2 = \{\phi, \{a,b\}, Y\}.$ Then $\{c\}$ is pairwise rps-continuous but not pairwise continuous.

Since every τ_j -semi-pre-closed,(i,j)-pgpr-closed, τ_j -pre-closed, τ_j - α -closed sets are (i,j)-rps-closed, we have every pairwise semi-pre continuous, pairwise pgpr continuous, pairwise pre continuous, pairwise α -continuous mappings are pairwise rps-continuous. But the converse of the above need not be true.

Example 4.5: Consider an identity function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ with $X=Y=\{a,b,c,d\}, \tau_1 = \{\phi,\{a\},X\}, \quad \tau_2 = \{\phi,\{a\},\{b\},\{c\},\{a,b\},\{b\},\{c\},\{a,b,c\},Y\} \text{ and } \sigma_2 = \{\phi,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,b,c\},Y\} \text{ then } \{b,c,d\} \text{ is pairwise rps-continuous but not pairwise semi-pre continuous.}$

Example 4.6: Consider an identity function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ with $X=Y=\{a,b,c\}, \tau_1=\{\phi,\{a\},X\}, \tau_2=\{\phi,\{a\},\{c\},\{a,c\},X\}, \sigma_1=\{\phi,\{a,c\},Y\} \text{ and } \sigma_2=\{\phi,\{b\},\{a,b\},\{b,c\},Y\}, \text{ then } \{a\}$ and $\{c\}$ are pairwise rps-continuous but not pairwise pgpr continuous, pairwise pre continuous and pairwise α -continuous.

Since every (i,j)-rps-closed set is τ_j -pre-semi-closed, (i,j)-gspr-closed, (i,j)-gsp-closed, we have every pairwise rps-continuous mapping is pairwise pre-semi continuous, pairwise gspr continuous, pairwise gsp continuous. But the converse of the above need not be true.

Example 4.7: Consider an identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ with $X=Y=\{a,b,c,d\}, \tau_1 = \{\phi, \{a\}, X\}$, $\tau_2 = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, X\}$, $\sigma_1 = \{\phi, \{a,c\}, Y\}$ and $\sigma_2=\{\phi, \{c\}, \{a,c\}, \{b,c\}, \{a,b,c\}, Y\}$, then $\{b\}$ is pairwise pre-semi continuous but not pairwise rps continuous.

Example 4.8 Consider an identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ with $X=Y=\{a,b,c\}, \tau_1=\{\phi,\{a\},X\}, \tau_2=\{\phi,\{a\},\{c\},\{a,c\},X\}, \sigma_1=\{\phi,\{a,c\},Y\} \text{ and } \sigma_2=\{\phi,\{b\},Y\} \text{ then } \{a,c\} \text{ is pairwise gspr continuous and pairwise gsp continuous but not pairwise rps-continuous.}$

Theorem 4.9 The following are equivalent: For a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$

- (a) f is pairwise rps continuous.
- (b) $f^{-1}(U)$ is (i,j) rps open for each σ_j -open set U in Y, $i \neq j$, i, j = 1, 2.

Proof. (a) \Rightarrow (b): Suppose that f is pairwise rps continuous. Let A be σ_j -open in Y. Then A^C is σ_j -closed in Y. Since f is pairwise rps-continuous, we have $f^{-1}(A^C)$ is (i,j) rps closed in X, $i \neq j$ and i, j = 1,2. Consequently, $f^{-1}(A)$ is (i,j) rps open in X.

(b) \Rightarrow (a) Suppose that $f^{-1}(U)$ is (i,j) rps open for each σ_i -open set U in Y, $i \neq j$ and i, j = 1,2. Let V be σ_j -closed in Y. Then V^C is σ_j -open in Y. Therefore, by our assumption, $f^{-1}(V^C)$ is (i,j) rps open in X, $i \neq j$ and i, j = 1,2. Hence $f^{-1}(V)$ is (i,j) rps closed in X. This completes the proof.

Definition 4.10: A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is

- (a) pairwise Pre semi-irresolute if $f^{-1}(U)$ is (i,j)- Pre semi closed in X for each (i,j)-Pre semi closed set U in Y, $i \neq j$ and i, j = 1,2.
- (b) pairwise gspr-irresolute if $f^{-1}(U)$ is (i,j)-gspr closed in X for each (i,j)- gspr closed set U in Y, $i \neq j$ and i, j = 1,2.
- (c) pairwise gsp-irresolute if $f^{-1}(U)$ is (i,j)-gsp closed in X for each (i,j)-gsp closed set U in Y, i \neq and i, j = 1,2.

Definition 4.11: A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise rps-irresolute if $f^{-1}(U)$ is (i,j)-rps closed in X for each (i,j)-rps closed set U in Y, $i \not=$ and i,j = 1,2.

Concerning the composition of functions, we have the following.

be two functions. Then

Theorem 4.12: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2)$

- (a) If f and g are pairwise rps-irresolute, then gof is pairwise rps-irresolute.
- (b) If f is pairwise rps-irresolute and g is pairwise rps-continuous, then gof is pairwise rps-continuous.(c) If f is pairwise Pre semi-irresolute and g is pairwise rps-continuous, then gof is pairwise Pre semi-continuous.
- (d) If f is pairwise gspr-irresolute and g is pairwise rps-continuous, then gof is pairwise gspr-continuous.
- (e) If f is pairwise gsp-irresolute and g is pairwise rps-continuous, then gof is pairwise gsp-continuous.

(f) If f is pairwise rps-continuous and g is pairwise continuous, then gof is pairwise rps-continuous.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be pairwise rps-irresolute. Let U be (i,j) -rps closed set in Z, , $i \neq j$ and i, j = 1,2. Since g is pairwise rps-irresolute, $g^{-1}(U)$ is (i,j) -rps closed in Y. Since f is pairwise rps-irresolute, $(gof)^{-1} = f^{-1}[g^{-1}(U)]$ is (i,j) -rps closed in X. Therefore, gof is pairwise rps-irresolute.

The proofs of (b)-(f) are similar.

But the composition of two pairwise rps-continuous functions is not a pairwise rps-continuous function in general as shown in the following example.

Example 4.13 Consider a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2)$ be identity functions with $X=Y=Z=\{a,b,c\}, \tau_1=\{\phi,\{a\},X\}, \tau_2=\{\phi,\{a\},\{c\},\{a,c\},X\}, \sigma_1\}$

= $\{\phi, \{a\}, \{a,c\}, Y\}$ and σ_2 = $\{\phi, \{b\}, \{a,c\}, Y\}$, μ_1 = $\{\phi, \{a\}, \{a,b\}, \{a,c\}, Z\}$ and μ_2 = $\{\phi, \{b\}, Z\}$ then for a μ_2 -closed set $\{a,c\}$ in Z, $(gof)^{-1}(\{a,c\}) = \{a,c\}$ is not (i,j)-rps closed in X. Hence gof is not pairwise rps-continuous.

Definition 4.14: A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise pre rps-continuous if $f^{-1}(U)$ is (i,j)-rps closed in X for each σ_i -semi closed set U in Y, $i \neq j$ and i, j = 1, 2.

Obviously every pairwise pre rps-continuous function is pairwise rps-continuous.

But it is not reversible. It is shown in the following example.

Example 4.15 Consider a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an identity function with $X=Y=\{a,b,c\}, \tau_1=\{\phi,\{a\},\{c\},\{a,c\},X\},\tau_2=\{\phi,\{a\},X\},\sigma_1=\{\phi,\{b\},Y\}\}$ and $\sigma_2=\{\phi,\{a\},\{c\},\{a,c\},Y\}$ then f is pairwise rps-continuous but not pairwise pre rps-continuous ,since the σ_2 -semi closed set $\{a\}$ in Y is not (i,j)-rps closed in X.

On Regular Pre-Semiclosed Sets in Bitopological Spaces Definition 4.16 A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise rps-closed if f(U) is (i,j) -rps closed for each τ_i -closed set U in X, $i \neq j$ and i, j = 1,2.

Definition 4.17 A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise pre rps-closed if f(U) is (i,j)rps closed for each τ_i -semi closed set U in X, $i \neq j$ and i, j = 1, 2.

5. Pairwise RPSO-connected space

Definition 5.1 A bitopological space (X, τ_1, τ_2) is pairwise RPSO-connected if X cannot be expressed as the union of two nonempty disjoint sets A and B such that $[A \cap \tau_1\text{-rpscl}(B)] \cup [\tau_2\text{-rpscl}(A) \cap B] = \emptyset.$

Suppose X can be so expressed then X is called pairwise RPSO-disconnected and we write $X = A \setminus B$ and call this pairwise RPSO-separation of X.

Theorem 5.2 The following conditions are equivalent for any bitopological space.

- (a) X is pairwise RPSO-connected.
- (b) X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 rps open and B is τ_2 -rps open.
- (c) X contains no nonempty proper subset which is both τ_1 -rps open and τ_2 -rps closed.

Proof. (a) \Rightarrow (b): Assume that X is pairwise RPSO-connected. Suppose that X can be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 -rps open and B is τ_2 -rps open. Then $A \cap B = \phi$. Consequently $A \subseteq B^C$. Then τ_2 -rps $cl(A) \subseteq \tau_2$ -rps $cl(B^C) = B^C$. Therefore, τ_2 -rps cl(A) \cap B = ϕ . Similarlywe can prove A| $\cap \tau_1$ -rps cl(B) = ϕ . Hence [A $\cap \tau_1$ -rps cl(B)] $\cup [\tau_2$ rps $cl(A) \cap B = \emptyset$. This is a contradiction to the fact that X is pairwise RPSO-connected.

Therefore, X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 -rps open and B is τ_2 -rps open.

(b) \Rightarrow (c): Suppose that X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 -rps open and B is τ_2 -rps open. Suppose that X contains a nonempty proper subset A which is both τ_1 -rps open and τ_2 -rps closed. Then $X = A \cup A^C$ where A is τ_1 -rps open, A^C is τ_2 -rps open and A, A^C are disjoint. This is the contradiction to our assumption. Therefore, X contains no nonempty proper subset which is both τ_1 -rps open and τ_2 -rps closed.

(c) \Rightarrow (a): Suppose that X contains no nonempty proper subset which is both τ_1 -rps open and τ_2 -rps closed. Suppose that X is pairwise RPSO-disconnected. Then X can be expressed as the union of two nonempty disjoint sets A and B such that $[A \cap \tau_1$ -rps $cl(B)] \cup [\tau_2$ -rps $cl(A) \cap B] = \phi$. Since $A \cap B = \phi$, we have $A = B^C$ and $B = A^C$. Since τ_2 -rps $cl(A) \cap B = \phi$, we have τ_2 -rps $cl(A) \subseteq B^C$. Hence τ_2 -rps $cl(A) \subseteq A$. Therefore, A is τ_2 -rps closed. Similarly, B is τ_1 -rps closed. Since $A = B^C$, A is τ_1 -rps open. Therefore, there exists a nonempty proper set A which is both τ_1 -rps open and τ_2 -rps closed. This is the contradiction to our assumption. Therefore, X is pairwise RPSO-connected.

Theorem 5.3 If A is pairwise RPSO-connected subset of a bitopological space (X, τ_1, τ_2) which has the pairwise RPSO-separation $X = C \setminus D$, then $A \subset C$ or $A \subset D$.

Proof. Suppose that (X, τ_1, τ_2) has the pairwise RPSO-separation $X = C \setminus D$. Then $X = C \cup D$ where C and D are two nonempty disjoint sets such that $[C \cap \tau_1 \text{--rps cl}(D)] \cup [\tau_2 \text{--rps cl}(C) \cap D] = \emptyset$. Since $C \cap D = \emptyset$, we have $C = D^C$ and $D = C^C$. Now, $[(C \cap A) \cap \tau_1 \text{--rps cl}(D \cap A)] \cup [\tau_2 \text{--rps cl}(C \cap A)] \cup [\tau_2 \text{--rps cl}(C \cap A)] \cup [\tau_2 \text{--rps cl}(C \cap A)] = \emptyset$. Hence $A = (C \cap A) \setminus (D \cap A)$ is pairwise RPSO-separation of A.Since A is pairwise RPSO-connected, we have either $(C \cap A) = \emptyset$ or $(D \cap A) = \emptyset$. Consequently, $A \subseteq C^C$ or $A \subseteq D^C$. Therefore, $A \subseteq C$ or $A \subseteq D$.

Theorem 5.4 If A is pairwise RPSO-connected and $A \subseteq B \subseteq \tau_1$ -rps $cl(A) \cap \tau_2$ -rps cl(A) then B is pairwise RPSO-connected.

Proof. Suppose that B is not pairwise RPSO -connected. Then $B = C \cup D$ where C and D are two nonempty disjoint sets such that $[C \cap \tau_1 - rps \ cl(D)] \cup [\tau_2 - rps \ cl(C) \cap D] = \phi$. Since A is pairwise RPSO-connected, we have $A \subseteq C$ or $A \subseteq D$ Suppose $A \subseteq C$. Then $D \subseteq D \cap B \subseteq D \cap \tau_2$ -rps $cl(A) \subseteq D \cap \tau_2$ -rps $cl(C) = \phi$. Therefore, $\phi \subseteq D \subseteq \phi$. Consequently, $D = \phi$. Similarly, we can prove $C = \phi$ if $A \subseteq D$ {by Theorem 5.3}. This is the contradiction to the fact that C and D are nonempty. Therefore, B is pairwise RPSO-connected.

Theorem 5.5 The union of any family of pairwise RPSO -connected sets having a nonempty intersection is pairwise RPSO -connected.

Proof. Let I be an index set and $i \in I$. Let $A = \bigcup A_i$ where each A_i is pairwise RPSO-connected with $\bigcap A_i \neq \emptyset$. Suppose that A is not pairwise RPSO-connected. Then $A = C \cup D$, where C and D are two nonempty disjoint sets such that $[C \cap \pi_1 \text{--rps cl}(D)] \cup [\tau_2 \text{--rps cl}(C) \cap D] = \emptyset$. Since A_i is pairwise RPSO-connected and $A_i \subseteq A$, we have $A_i \subseteq C$ or $A_i \subseteq D$. Therefore, $\bigcup (A_i) \subseteq C$ or $\bigcup (A_i) \subseteq D$. Hence, $A \subseteq C$ or $A \subseteq D$. Since $\bigcap A_i \neq \emptyset$, we have $X \in \bigcap A_i$. Therefore, $X \in A_i$ for all i. Consequently, $X \in A$. Therefore, $X \in C$ or $X \in D$. Suppose $X \in C$. Since $X \in C$ on $X \in D$. Therefore, $X \in C$ or $X \in D$. Therefore, $X \in C$ on $X \in D$.

Theorem 5.6 Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijective and pairwise pre semi closed. Then inverse image of a σ_i -rps closed set in Y is τ_i rps closed set in X.

Theorem 5.7 Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijective and pairwise pre semi closed function. Then the image of a pairwise RPSO-connected space under f is pairwise RPSO-connected.

Proof. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise continuous surjection and pairwise pre semi closed. Let X is pairwise RPSO-connected. Suppose that Y is pairwise RPSO-disconnected. Then $Y = A \cup B$ where A is σ_1 rps open and B is σ_2 rps open in Y. Since f is pairwise continuous and pairwise pre semi closed, we have $f^{-1}(A)$ is τ_1 rps open and $f^{-1}(B)$ is τ_2 rps open in X. Also X $= f^{-1}(A) \cup f^{-1}(B)$, $f^{-1}(A)$ and $f^{-1}(B)$ are two nonempty disjoint sets. Then X is pairwise RPSO-disconnected. This is the contradiction to the fact that X is pairwise RPSO-connected. Therefore, Y is pairwise RPSO-connected.

6. Pairwise RPSO-compact space

Definition 6.1 A nonempty collection $\zeta = \{A_i, i \in I, \text{ an index set}\}\$ is called a pairwise rps-open cover of a bitopological space (X, τ_1, τ_2) if $X = \bigcup A_i$ and $\zeta \subseteq \tau_1$ -RPSO $(X, \tau_1, \tau_2) \cup \tau_2$ -RPSO (X, τ_1, τ_2) and ζ contains at least one member of τ_1 -RPSO (X, τ_1, τ_2) and one member of τ_2 -RPSO (X, τ_1, τ_2) .

Definition 6.2 A bitopological space (X, τ_1, τ_2) is pairwise RPSO-compact if every pairwise rps-open cover of X has a finite subcover.

Definition 6.3 A set A of a bitopological space (X, τ_1, τ_2) is pairwise RPSO-compact relative to X if every pairwise rps-open cover of B has a finite subcover as a subspace.

Theorem 6.4 Every pairwise rps-compact space is pairwise compact.

Proof. Let (X, τ_1, τ_2) be pairwise RPSO-compact. Let $\zeta = \{A_i, i \in I, \text{ an index set}\}$ be a pairwise open cover of X. Then $X = \bigcup A_i$ and $\zeta \subseteq \tau_1 \cup \tau_2$ and ζ contains at least one member of τ_1 and one member of τ_2 . Since every τ_i -open set is τ_i -rps open, we have $X = \bigcup A_i$ and $\zeta \subseteq \tau_1$ -RPSO (X, τ_1, τ_2) one member of τ_2 -RPSO (X, τ_1, τ_2) and ζ contains at least one member of τ_1 -RPSO (X, τ_1, τ_2) and one member of τ_2 -RPSO (X, τ_1, τ_2) . Therefore, ζ is the pairwise rps-open cover of X. Since X is pairwise RPSO-compact, we have ζ has the finite subcover. Therefore, X is pairwise compact.

Theorem 6.5 Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous, bijective and pairwise pre semi closed. Then the image of a pairwise RPSO-compact space under f is pairwise RPSO compact.

Proof. Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise continuous surjection and pairwise pre semi closed. Let X be pairwise RPSO -compact. Let $\zeta = \{A_i, i \in I, \text{ an index set}\}$ be a pairwise rpsopen cover of Y. Then $Y = \cup A_i$ and $\zeta \subseteq \sigma_1$ -RPSO $(Y, \sigma_1, \sigma_2) \cup \sigma_2$ -RPSO (Y, σ_1, σ_2) and ζ contains at least one member of σ_1 -RPSO (Y, σ_1, σ_2) and one member of σ_2 -RPSO (Y, σ_1, σ_2) . Therefore, $X = f^{-1}[\cup (A_i)] = \cup f^{-1}(A_i)$ and $f^{-1}(\zeta) \subseteq \tau_1$ -RPSO $(X, \tau_1, \tau_2) \cup \tau_2$ -RPSO (X, τ_1, τ_2) and $f^{-1}(\zeta)$ contains at least one member of τ_1 -RPSO (X, τ_1, τ_2) and one member of τ_2 -RPSO (X, τ_1, τ_2) . Therefore, $f^{-1}(\zeta)$ is the pairwise rps-open cover of X. Since X is pairwise RPSO-compact, we have $X = \cup f^{-1}(A_i)$, i = 1 to n. $\Rightarrow Y = f(X) = \cup (A_i)$, i = 1 to n. Hence, ζ has the finite subcover. Therefore, Y is pairwise RPSO-compact.

Theorem 6.6 If Y is τ_1 - rps closed subset of a pairwise RPSO-compact space (X, τ_1, τ_2) , then Y is τ_2 -RPSO compact.

Proof. Let (X, τ_1, τ_2) be a pairwise RPSO-compact space. Let $\zeta = \{A_i, i \in I, \text{ an index set}\}$ be a τ_2 -rps open cover of Y. Since Y is τ_1 - rps closed subset, Y^C is τ_1 - rps open. Also $\zeta \cup Y^C = Y^C \cup \{A_i, i \in I, \text{ an index set}\}$ be a pairwise rps-open cover of X. Since X is pairwise RPSO-compact, $X = Y^C \cup A_1 \cup \cup A_n$. Hence $Y = A_1 \cup \cup A_n$. Therefore, Y is τ_2 -RPSO compact.

Since every τ_1 -closed set is τ_1 -rps closed, we have the following.

Theorem 6.7 If Y is τ_1 closed subset of a pairwise RPSO-compact space (X, τ_1 , τ_2), then Y is τ_2 -RPSO compact.

Theorem 6.8 If (X, τ_1) and (X, τ_2) are Hausdorff and (X, τ_1, τ_2) is pairwise RPSO-compact, then $\tau_1 = \tau_2$.

Proof. Let (X, τ_1) and (X, τ_2) be Hausdorff and (X, τ_1, τ_2) is pairwise RPSO-compact. Since every pairwise RPSO - compact space is pairwise compact, we have (X, τ_1) and (X, τ_2) are Hausdorff and (X, τ_1, τ_2) is pairwise compact. Let F be τ_1 -closed in X. Then F^C is τ_1 -open in X. Let $\zeta = \{A_i, i \in I, \text{ an index set}\}$ be the τ_2 -open cover for X. Therefore, $\zeta \cup F^C$ is the pairwise open cover for X. Since X is pairwise compact, $X = F^C \cup A1 \cup \cup An$. Hence $F = A1 \cup \cup An$. Hence F is τ_2 -closed. Similarly, every τ_2 closed set is τ_1 -closed. Therefore, $\tau_1 = \tau_2$.

References:

- [1] Anitha M and P Thangavelu (2005) On Pre-Generalized Pre-Regular-Closed sets. Acta Ciencia Indica 31M (4):1035-1040.
- [2] Jelic M (1990) A decomposition of pairwise continuity. J.Inst. Math. Comput. Sci. Math.Ser.3:25-29.
- [3] Khedr FH, SM Al Areefi and T Noiri (1992) Precontinuity and semi-precontinuity in bitopological spaces. Indian J. pure appl. Math. 23(9): 625-633.
- [4] Levine N (1970) Generalized closed sets in topology. Rend. Circ. Mat. Palermo19(2):89-96.
- [5] Maheshwari SN and R. Prasad (1977/78) Semi-open sets and semi-continuous functions in bitopological spaces. Math. Notae 26: 29-37.
- [6] Sampath Kumar S (1997) On a decomposition of pairwise continuity. Bull. Cal. Math. Soc. 89: 441-446.
- [7] T. Shyla Isac Mary and P.Thangavelu On Regular Pre-Semiclosed Sets in Topological Spaces-KBM Journal of Mathematical Sciences & Computer Applications 2010 1 (1): 9–17
- [8] Veerakumar MKRS (2002) Pre-semi-closed sets. Indian J. Math 44 (2): 165-181.