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Abstract

The Wiener index for a connected graph G is defined as W(G) = Zd(u,v) , where
IV (G) -

the summation is taken over all unordered pair of vertices of ¥(G). The n-Steiner Wiener

index of a connected graph G is W, (G) = D> d(S), where d(S) is the Steiner distance
ScV(G)

of the n-element subset S of ¥(G) and the summation is taken over all unordered n-element

subsets of ¥(G). The first Zagreb index M,(G)is defined as M, (G)= ¥ [deg(v)]2 .In

veV
this paper, the Wiener index and the first Zagreb index of neighbourhood Corona of two
graphs, Wiener index for Splitting graph and 3-Steiner Wiener index of the Complementary
Prism, edge joining of two graphs and duplicating graph are found.

Keywords: Wiener index, First Zagreb index, Steiner Wiener index, neighbourhood corona,
splitting graph, complementary prism.,
AMS Subject Classification Number. 05C12.
1 Introduction

All the graphs considered in this paper are finite, undirected and simple. We refer the
reader to [6] for terminology and notations. A graph G = (V,E) is a set of finite nonempty set
of objects called vertices together with a set of unordered pairs of distinct vertices of G called
edges. The vertex set of G is denoted by ¥(G), while the edge set is denoted by E(G). The
edge e = {, v} is said to join the vertices w and v. If e = {w, v} is an edge of a graph G, then u

and v are adjacent vertices, while u and e are incident, as are v and e.
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The degfee of a vertex v in a graph G is the number of edges of G incident with v,

which is denoted by deg(v) or simpl]

b bydeg {v}. A vertex of degree 0 is called an isolated

vertex and a vertex of degree 1 is an enyl vertexeft

The distance d,, (u,v) from a vs

u, v) is the length of the shortest u —

a ¥ — v geodesic.

rtex # to a veriex v in a connected graph G, or simply

v path in & [1]. A — v path of length &u, v) is called

The Wiener index is the first and most studied topological index, both from

theoretical point and applications. The Wiener number or Wiener index W((G) of a graph G

was put forward in 1974 by Harold Wiener [11]. Its applications in the modeling of various

physio—chemicals, biological and pharmacological properties of organic molecules are

outlined in several monographs and reyiews. The Wiener index W(G) of a graph G is defined

to be W(G)=> d(v,.v,)-

i<
The Wiener index also be def]

denoted by D(G) and the (i,j)" entry
elements of i row of D(G) is equal to

The distance of a vertex u q

du|G)= I d@.v)..
ve¥ (o)

From this, the Wiener in
H
W(G)=— D du|G).
vet (G)
The Wiener index ean be calcy

there is no exact formula for finding th

ned by considering the distance matrix of a graph G
in D(G) is cqual to d{v,,v,;)[3,4]. So the sum of the

n
Z d(v;,v;), where n is the number of vertices in G.

j=1
bf a graph G denoted by d(x|G) and is defined as

dex of a graph G can also be defined as

lated for some particular classes of graphs. But as such

e Wiener index of a general graph.

The Steiner distance of the sét S of vertices in a connected graph G, d;(S)is the

number of edges in a smallest connected subgraph of G contains S and such a connected

subgraph is called as a Steiner tree for 8. If |S| = 2, then the Steiner distance of § is the

distance between two vertices of 8. Fy

rther if S = {w, v}, then J(S) =d(u,v) while if I§] =

n, then d.(S)=n—1. Steiner trees have applications to multiprocessor networks. For

example, it may be desired to connect
the fewest communication links. A §

corresponds to such a sub network.

a certain set of processors with a sub network that uses

teiner tree for the vertices that need to be connected
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The n-Steiner Wiener index of a connected graph cis W, (G)= 2. ds(S),
SV (G)

where d,(S) is the Steiner distance of the n-element subset s of v(G)and the summation is
taken over all unordered n-element subsets of ¥(G). In other words, the n-Steiner Wiener

index of a connected graph G is W, (&)= d(icj) where d,(G) = Z{dG(S) /I ScV(G), |S|= n}.
n

The Zagreb indices have been introduced more than thirty years ago by Gutman and
Trinajestic [6]. Tt is an important molecular descriptor and has been closely correlated with

many chemical properties [6, 8]. The first Zagreb index M (G) is defined as

M(G)= Y [degs] 6]
veV (G)

Let G, and G, be two graphs having n», and »,vertices and m, and m,edges
respectively. Then the neighbourhood coronaG, * G,is the graph obtained by taking »,
copies of G, and each member of neighbours of every vertex v of G,is adjacent to all the

vertices of the copy of G, corresponding to v.

Figure1,.Cg* K3

Splitting graph S(G) was introduced by Sammpath Kumar and Walikar [10]. For each
vertex v of a graph G, take new vertex v’ and join v’ to all vertices of G adjacent to v. The
graph S(G) thus obtained is called the splirting graph of G.

The complementary prism GG is the graph formed from the disjoint union of G and
its complement G by adding the edges of the perfect matching between the corresponding
vertices of Gand G .

In this paper, we explore some topological indices under several graph operations for

some connected graphs.
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2. WIENER INDEX OF NEIGHBOURHOOD CORONA Ai‘JD SPLITTING GRAPH
The corona of two graphs is defined in [5] and there have been some results on the

corona of two graphs [7].

Theorem 2.1;

For any two graphs G, and G, , the Wiengr index of &, * G, is

W(G, *G,)=(n, + )V W(G)) +nW(G,))+ 2nym, +dnn,

Proof: )

By observing the neighbourhood corona operation G, * G, of any two graphs G,and G, , we

have

do (vi.v,)=dg g, (v, ),

oo, Gttt )= dg, (Vi,V; ), lf vert::ces are nor.a adjacent o
2 LR dg (vi»v;)+2, if vertices areadjacent

dg Wiv,)=dg.q (vi,v,).

From these,

mon

; i
dgea, (V) = Exdc;.'(;, (v;,v;)+ dag, (Vislh ;) + Zdo‘.'o‘, (Vi i)
7 = =1

—dy () + D dy (v,v)) 21,

J=1 k=1
Fai

= dG’ (v,)) +nydg (v)) +2n,

=(n, + Ddg (v,)+ 2n, (1) and

el

L) " " "l
5
Ao, (4) = Zdﬁ‘:‘ﬂz (W, ott,,) + Xi.fdﬁ.‘@ (W1, )+ Zdo.‘o‘z W,05v, )+ dgog, Vit 1)
J=1 i=t

i=k JRi Jai
=dg, ) + D dg (v,,v,) f2m, deg, () + D> dg (v,,v,) +2
J=l J=l 1=
=i J=i

=d () +n,ldg, (v) +2feg, (v, MWrd, (viy+2
=dg (W) +(n; +dg (v, ) +2n, deg, (v;)+2. 2

From (1) and (2), the Wiener index of |G, * G, is

W(G,*G,) = lz[z e, (V) + D S, )]

i=l k=l
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i=l i=l k=1

;[Z(n,+l)d (v)+2n,}+5[i2d (@, )+ (ny + g (v,)+2n, deg, (v)+2)j|

2= %[2(:12 + ])"Zldﬁ. (v,Y+2nn, } + %[nzl(nzzdﬁz (u,, Y+ n,(n, + Ddg (v;) + 2n? degg (v,) + 2n2J]

=1 \ k=1

= [(n2 +DW(G,) + n[n2]+%{i(2W(G2) +n,(n, +1d; (v,) + 2n} degg (v,) + 2n2)}

i=l

n

= [("2 +DW(G)) + ”1"2]"‘ ZI:W(Gz) +

i=l

m0 4wy n? dege, (v;) + "2]

=[n, +1)W(Gl)+n,n2]+[n,W(G2)+n2 (n, +DW (G} + 2nim, +n,n2]
=(n, + DW(G,) + MW (G,) + ny(n, + DW(G,) + 2nim, +2n;n,
=(n, +1)*W(G,) +nW(G,) +2nim +2nn, a

Corollary 2.2:
The Wiener index for the splitting graph of a graph G is W(5'(G))=4W(G)+2m+2n.

Proof:
Bytaking G, =G, G, =K and G, * G, is the splitting graph of G,, the result follows. o

Theorem 2.3:
For a graph G, the 3-Steiner Wiener index of the complementary prism GG is

W,(GG)=2[w,(G) + W, ()] + %[W(G) +W(@G))+ 2{3 +2n(n-1).

Proof:

Let d;(v) denote the sum of the Steiner distances of the sets of cardinality 3 containing v in

G. Then,

dS5) =dé(v)+dg(v)+(:]+da(v)+n_1 »
dos (V) =dg(")+dé(i")+(gJ+dG(v)+n—1.

Therefore, w_,(ca)% Y dSs)

vel (GG}
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2

vekid)

ae (D

¥ d
vel ()

U [ -

=W3(G)+W;(§)+"[:J+

“'36(“)]

= %[ve;e,(dg WM +dz (M + (;’J + ffa ()

2,

-t-n—l]+

2W(G)
3

+n(n~1)+wg(c)+m(a“)+n[’;)+

2W(G)
3

[dg(r:) +dJ(v) +("J +d(V)+n— 1]
FeF(G) . 3

+nr{n-1)

= 2w, (G) + W, )]+ % W +w@)H)+ 2;{;'} +2n(n —1).

Theorem 2.4:
Let G be a graph and xy be an edge of (& so that G — xy has two components namely G, and

G,. Then,

W(G)=I5(G,) +5(Ga) + S [W(G)+ W ()]
+~:1-3-|:(n, +n2)[(2 ]+[?D + [r.vl (r

v,, be the vertices of G, and G,in G - xy.

L e

J +Hy ('g D : (dq (x)+dg, (}’)) + "1d<5;2 )+ "2dcs;, (x)]

Proof:

Let wy,u;.u3,...u, and v, vy vy,

Then

A w,)=dg @)+ ["22 J + ["; )dc, () + 48, 0)+ dg, () + ["2 ] + ["2 ]d (»and

dé(v,-)zdgl(vlh(’;']-k[? Jan () +dS ()+dg, (v,.)+["22]+(';2)dq ).

Therefore,
W(G)**|:Zd (u,)+Zd (v, )}

K 5 R, R,
zdc.(u;)"'nt(z]'*'”l(zJd_c;,(x)
gds (v, )+n2(nz[J+nz(2Jdcz(y,
3W(G)+n1[ J+(";H
3w<c)+nz[( }[ ]] (

b.llr-—-

+ nld(i )+ idr;, () +n, ('; J +n (?; Jdo‘, (y}] +

+ngd (x)+ "chz v,)+n, ("2 J + n,[';’ ]dﬁ, (x)]

=l

JdGl (x)+ nl("zz ]dc;, )+ il‘:ld'é2 )+ ZW(GI J+

ot

]dgz (»)+n, ['; ]do.l (x) + n,dj (x) +2W(G,)
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| B(PV:(GJ"‘ Wa(Gz))+ (n, + "2)[[};'}4'["22” +l:n|[’:;J+ "2(}; ]]dﬁ! )+

3
Ln [';2 J + m[nZI ):Idc. () +mdg, () +n,dg (0)+2(W (G,) + W(G,))

3(W3 (G)+ Wa(Gz))+ (n +nz){[gj+[?))+{nr(?J + nz(nzl JJ'(dG. (x) +dcz (J’))+

| mdg, (¥)+m,dg, (0)+2W(G,) + W(G,))
Hence the result follows o

]

o | =

Theorem 2.5:

Let G be the graph obtained from G, by duplicating each vertex of G, by an edge.

2
Then #,(G) = 9W,(G,) + 20(G) + 2 +‘—§E[’;]+_§.n

Proof:

Let, w,v,,...,v, be the vertices of G, and {v],v’} be the duplicating edge corresponding to v, in

G,. Then,

R 4]
dé(v,-)=d§. (v,.)+{d(,-| (v;)+ 2n]+2a’§I ;) +4(3] = 3‘15: (v;)+ 2"+do‘l (v,-)+4(3} and

da(V)=ds(v") = dg (v) +1+[dg (v,.)+3n]+2d(§1 (v,.)+6(:] = 3ng (v;) +3n+dg (v,) +6[;]+1

Therefore,

mmp%Z@m

veHG)

=%Z”:[dg(v,.)+ S ) +dS o)

_ % 345 )+ d, )+ 20t + 4;{;'} +63d5 (v,) +23 d,, (v,) +6n* + 12;{'3'] + 2nJ
L i=1 i=l i=] i=]

-~

2IW,(G,) +6W(G) +8n° + 16,{;’] + zn:l

() | mme

8n* 16n{n) 2n
=9 (G) + 2W(G)+ — +—] |+Z=
2(G)) (G) 3 3 @ 3
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3. FIRST ZAGREB INDEX OF NEIGHBOURHOOD CORONA

Theorem 3.1:
For any two graphs G, and G, , the first Z

M (G, *Gz)=("§ +3n, + DM (G)) +n

Proof:

hereb index of G, * G, is
M (G,)+8mm,.

By observing the neighbourhood coropa operation G, *G,of any two graphsG,andG,,

degg e, (v;)=(n, + 1) deg (v;) and deg

2.

ueV(Gy*Gy)

Therefore, M, (G, *G,) =

m o Ry

ZZ [dego.‘.(;: (u;,

i=l k=l

= i [degGl *G, (V,. )]2 +

i=]1

"

=3 [0na + 1 (degg v ]+ 3

= m, + D" M,(G) + L 3. [ (deg,
F=lk=
= (7, + D2 M, (G) + i, M (G)) + ny

= (n, + D? M, (G,) + n, M, (G,) +

={n +3n, +DM (G)+n M (G,)+8
Corollary3.2:

(72, 111,

o, (U, )= degg (v;) +degg (1, )-

[dchI G, (u)]2

2

)]
nZ: I:degG! (v,)+ degG2 (v 4 )]2

)2 +(degg, (4;4))? +2degg, (v,).desg, (4, |

M(G)+23 3

i=1 k=1

Fast, 00 de, 0]

M, (Gy) + 23 [ deg, (v)(2m2) ]

The first Zagreb index for the splitting graph of a graph G is

M (SY(G)=5M(G,) +n M (G;)
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