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Abstract

In this paper we analyze a GI/M/1 queue with working vacation, in which the
server works at different rate rather than completely stopping the service during vacation
periods. Baba investigated a GI/M/1 queue with multiple working vacations .They have
formulated the queueing system as an embedded two dimensional Markov chain by
choosing the arrival epoch as embedded points. Using the algonthmic approach Neutus
and others derived the steady state distributions for the number of customers in the system
both at arrival and arbitrary epochs and for the sojourn time for an arbitrary customer.
Thus the purpose of this paper is to analyze GI/M/1 queueing model under single server
working vacation and derived the equilibrium distribution of system size at pre arrival
epoch by solving the difference equations using operator technique. Further the expected
queue length and various performance measures are obtained in a closed form. Finally

special cases are also deduced.
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1. Introduction

Over the past two decades, queucing systems with vacations have been studied
by many researchers and have been applied to many situations , namely in computer
systems, communication networks , production managing and so forth [2]. Servi and
Finn [5] first studied queueing system with working vacations , where the server works
at ‘a lower rat rather than completely stopping service during vacation. That is during
a working vacation, customers will undergo service at a lower rate and depart system ,
whereas, customers 1n the classical vacation will impossibly depart the system. Therefore
the working vacation models have more complicated modalities and the analysis of this

kind of models is more difficult than classical vacation queue.
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Servi and Finn [5] studied an NI/M/1 queue with multiple working vacations
and obtained the p.g.f of the number of gustomers in the system and mean waiting time

of customers, and applied the results tp perform analysis of gateway router in fiber

communication networks. Liu et al [4] discussed stochastic decomposition structures of
stationary indices, derived the distributioh of additional queue length and additional delay
and obtained expected regular busy periad and expected busy cycle. Kim, Choi and Chae
[3], and Takagi [7] generalized the work of Servi and Finn’s model to an M/G/1 queue
with multiple working vacations . Baba [1] investigated a GI / M/1 queue with multiple
working vacations and derived the steady state distributions for the number of customers
in the system both at arrival and arbitrary epochs and for the sojourn time for an arbitrary

customer.

Tian et al [6] analyzed an 1 queue with single working vacation using

quasi birth and death process and matrix geometric solution method, they derived the
distributions for the number of customers and the virtual time in the system m steady
state. Furthermore, they obtained the expected busy period, expected busy cycle, and got

the stochastic decomposition structures gf stationary indices.

In this paper, we have derived |the steady state probabilities using embedded
Markov chain technique and derived the|expected queue length in a closed form. Further

various performance measures are also deduced.
Model Formulation:

We consider GI/ M/1 queue in which the server begins an exponentially distributed
working vacation, whenever the system becomes empty. During the working vacation
the arriving customers are served at a mean rate p . When the vacation ends, if there are
customers in the queue, then server ch ges his service rate p_ to p and regular busy
period starts. Otherwise the server begins another working vacation. That is the server
follows multiple (or) repeated vacation golicy. Thus the service time during vacation and
regular busy period and vacation follow exponential distributions with parameters p,

i, and 1 respectively and they are indepgndent of each other.

Embedded Markov chain of queue length:

Let ©_denote the arrival epoch of the nth customer with 7, = 0. The inter arrival
times { T, n> 1} are independent and identically distributed with a general distribution

function denoted by A(t) with a mean 1/N and a Laplace Stieltjes transform (LST) denoted
by A*(6).
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By considering the above assumptions and by utilizing the Embedded Markov Chain
technique, the steady state probabilities , expected queue length and various performance

measures are derived.
Queue length at pre arrival epochs:

T, .0 =1,23,....... (to=0) arc the arrival epochs and. we examine the system at
the pre arrival epochs T, — 0.
Let Q ( © ) denote the number of customers in the system at time T and Q= Q (7 -0)

and T, = 0 if the nth arrival occurs during working vacation
1 if the nth arrival occurs during service period

Since the working vacation times, the service time during a regular busy period and
working vacation are all exponentially distributed the process { (Qn, T, ), n=>1} defines a
semi Markov chain with state space { (n,0),n=0,1,23,...} U{(n,1),n=123,........ }
() Thus the state (n,0) ,(n > 1) represents that therc are n customers in the system and the
server is on working vacation, whose service rate 1s [ .
(i) The state (n,1) ,(n > 1) denotes that the server is serving at regular rate po with n
customers in the system.
(iii) (0,0) implies that the system is empty and the server is idle during vacation.

In order to obtain the steady state equations we first define the following

probabilities :

1. Letby = f:’ e“‘ﬂ“ii—"fi dA(t) k=0.Then by gives the probability that k customers
are served at regular rate g in an inter arrival time .

2. Similarly ¢y = f:: e 7t r'“:—?k e *** dA(tf) k 2 0 implies the probability that the
working vacation time is greater than the inter- arrival time and k service completions

occur at rate W, during an inter arrival time . and

Y SFUURY B (Y cue s o IR .
3.d« :U: E‘;‘:ﬁfo (ne™* ":—x e “V"eﬁ{—_)_},—e #bt=xdy dx  dA() } gives the

probability that the server who is in working vacation returns from vacation after a time x (0
- <x <t)and k customers are served in an inter arrival time t, in such a way that j customers
are served 1n time x at a rate Yy, and the remaining (k — j ) customers are served in time (t-x-)

at rate P g.
Steady state equations:
By following the law of transition, the Markov chain {(Q, , T,); n > 1} leads to the

steady state equations satisfied by the limiting probabilities '
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pnj = Iimk—bac- pr(ﬂk :jk ’jk 3j) 3 n 2 0 :j :071
Thus by assumung the steady state exists {he Chapman Kolmogrov equations satisfied by

pnj ‘s inthe steady state are given by

pPoo E?’:opse(i — =0+ dk)+ Llipa (1 —Zk=o bk) (1)
Pno = Xiip Piinot n> |l (2)
P11 =X P (B + Eiepio (d) (3)
Pnr — E;D:G Pian-11 B T X5 Pitn-po &; 022 *

Steady state solution:

To solve the steady stale equations, we define the forward shifting operator E on p p;
by E(pno )= pns1o.Thus equation (2) can be written as
(E-27 ¢E' Py =0for n>0 (5)
The characteristic equation of the homogepeous difference equation (5) is
D =z- Ly z' =0
Let C(z) = X7, ¢; z7 be the p.g.f of thg probabilities ¢;’s then c(z) = AT tpy(1-2).
Since C(z) is monotonically increasing angl strictly convex , there exists a unique root
1 € (0,1) of qﬁ(z) =0 provided ¢'(1)>0 (Gross and Haris [ 2] )
Since ¢'(1) = 1+p, A" (n)>0,
the solution of the homogeneous difference equation is given by
Pao =1;" pPno n>0 6)
withC(ry )=n, andr; € (0, 1)
Similarly by defining the forward displacenent operator E on p n1 ,
the equation (4) can be written as
B-Tg bE a1 = Zizo Pasjody | 021 @

=250 d; Y (Pno)

Hence equation (7} i1s a non — homoggneous difference equation whose characteristic
equation is given by z= 30 b z/ =B(@) = A" (o (1-2)).
Following the arguments mentioned earliey if B *(1) = %‘—’ > 1 then there exists an unique
root rgt (0,1} for the characteristic equation @ (z) =z — B(z) =0
fLeB{rp)=rm and 0<r, <] (8)
Thus the solution of the non- homogeneoug difference equation (7) becomes

1+
dir, !

T, P . ;
pr=A T + ZT:Q _'_l}:'&“"bla"} provﬂed T} #Ty andpo:_i<1
TLT &jme 2T #ao
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Thus po canbe writtenas p, =(A7y + k(n)J 5 g n= 1.

o tig?’lmj? . . .
Where Ay =Apg and k(r )= Zj=o 72 5,;_,, ;;_;- which can also be written as
1 j=a
e DRy
k) = S ®)

where D(ry) = Z7Lo d;17

1

Hence the probabilities p ,¢’s and p,,’s are given by

Pno =I1" pno n>0 and }

par =(A7 + k(n) 1 e n2=1

(10)
Thus the probabilities are expressed interms of pyo and A . The constant A can .
be evaluated by using (1) or (3).
Substituting for pig ¢ s and p;) ‘s from equation (10) in equation (3) we get
(Ap  + kM) 1) =LA+ k(n) )b + Iiem d
A(np -B(n) =k(r)(Br)-n)+D(r)-bo(A+k(r1)) (11)

Equation (8) and (9) imply that

Diry)
ry— B{ry

B(I’o ) =r19 and k(l’l) =
The equation (11) can be simplified as
k(r1) B(r) ~n)+D(r )-by(A+k(r,))=0

,f_‘?(i,y (B(r)) —n ) +D(n)~bo (A+k(r1))=0

Thus bg (A+ k(r; ))=0, since by #0
we get (A+k(r;))=0 => A=-k()
It 15 verified that equation (1) is also satisfied by noting that
ZiZo Pio D=0 Gk = Siz0Ci Srei Pi 0
1P Thea b =X b Bs Dy

Thus pqi :k(rl)(rln -Taﬂ)Poo n =zl (12)

Further the value of ppo can be calculated by using the normalizing condition
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f=<) . o . a—
n=0 Fro + Zn=1 “h1 =1

Substituting for p,,, and p,, from (10} we find that

L k) (- ) =ped

(1 Ty 1 "1_ 1 g
1‘-7’1
Where p o= —— 7/ =g (13)
14k )(752)

Hence ,pno = r1" pao n>0 and
Pu =kir))(r -7 )poo n=[ where ppo is given by equation (13} .

By using equation (14) the total pgf is given by

p@) = Eieo Pro 2" + iy PpiZ]

p) = Zi=o Py, 20 + Zg=r (Arg) + k(1) 77 )Pgo 27

poo [(1 —n )™ + Iin, —k(r)g'z" +k(n) 7" 27

i

Poo [(3—7'13)_1 “‘k(T’:){ s R }é

1-ryz 1-ryz

il

Mean queue length:
In this section we calculate the me¢an queue size of the model.
If L, denotes the mean queue sizg for the model then it can be written as
Lq=Zas1 P+ Xi=gPro
By substituting the value of py) and p¢|from equation (10),

L 4 is simplified as,

- re Dir,) DirJr, ]
L 9 [il*rg_)"’ (1 + v —~B{r) (rl—B{ri}}(l-ﬂra}z) Pao

h 1—7r,
where poo= T To
1+k(r) 1—r0)

Other performance measures:

If p, and p, denote the probability that the server is on vacation and busy respectively then

= _Poo
(1-7y)

Pv=2n=p Pno ;
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Py =Eim s = Zim 500 %)k

by substituting for k(r,) and pgo we get

_ D{r_,) r—7e
Pb Bl ((1—?‘1)(1—1'.}))
Particular cases:
If the arrival follows Poisson distribution the results of GI/M/1/MWYV model

Coincide with the corresponding results of M/M/1/MWYV model of Servi and Finn [5].

Let a(t) = dﬂir} A e

I
~

Aug
(A% u, )%

by applying the definition of Laplace transform forby we get by =

since B(z) = 152, b;z7 (from equation (7))

E!

which in turn gives B(z) = Trma
But from equation (8) we have B(r,} =

Hence we get pory -(At+po)ro+A=0as in M/M/1 wherety = py

Similarly by applying the definition of Laplace transform to ¢ we get

s
(A-i-;.l,,)k'"' 4

i

Slnce C(Z) Z i=g C :.j we get C(Z) = m

Cy =

AsC(n )= =, weobtain pyrf -(Atp, +q)n +A=0.

Again proceeding in the same way we get

E : (Atp,)
dy = A 1y a(_ ( Hy ) )
k (A% 17X A4 4,0 E T N\ AF g, )

in
Atpgi-2) A+ n+ pp(1-2)

Then D(z) =

by substituting for B(z) and D(z) in equation (9) we get

= D(?" ) —= —HT .
k(r ) B{ri) I‘n(1 —":.)(J‘o— v';}) asin MM/I/MWV

Thus we find that, pyo= 1" pyo n>0 and
pai =k(r) (77" -3 )pos n=1 of GUM/I/MWV

coincides with that of M/M/1/MWYV of Servi and Finn [5].
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Conclusion

In this paper we have developed

he analytical steady state results for the GI/M/1

under multiple vacations in a closed forin by solving its difference equations. Moreover

we {ind that the results of M/M/1/MW?Y

particular case.
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