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b-CHROMATIC NUMBER FOR SOME GRAPHS

I8, Amckia#aj and V. Premalatha

ABSTRACT

A b-coloring of a graph G i§ a proper vertex coloring of & such that

each color class contains a vertéx that has at least one neighbor in every

other color class and b-chromati¢ number of a graph G is the largest integer

#(G) for which G has a b-colorirlg with ¢(G) colors. In this paper, we have

obtained the B-chromatic numbgr of the graphs Py, X P, Cq x Cn, Wy,

S9(G), T, and graphs obiaine

cycle by an edge .

d by duplicating each vertex of path and
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1. INTRODUCTION

Classification Number. 05C15, 05038.

Let G he a graph without loops apd multiple edges with vertex set V(G) and

edge set E{G). A proper k-coloring of graph G is a function ¢ defined on V(G)
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b-Chromatic Number for Some Graphs

onto a set of colors C = {1,2,...,k} such that any two adjacent vertices have
different colors. For every 1,1 < ¢ < k, the set ('; is an independent set of vertices
which is called a color class. Let F, be a path graph with n vertices and n — 1
edges. Let C, be a cycle with n vertices and n edges. The graph S3(G) is a graph
obtained from & by subdividing each edge of G by a new vertex. Corona product
or simply corona of graphs G; and G4 is a graph which is the disjoint union of
one copy of G1 and |v;| copies of G2 (Jv;] is number of vertices of G3) in which
each vertex copy of G is connected to all vertices of separate copy of Gy. The
Cartesian product of two graphs G| and G has the vertex set V(Gi) x V(Gz)
and two distinct vertices {u, ') and (v.v') arc adjacent in G| x Gy if and only if
either u = v and ' is adjacent with v or ' = v and u is adjacent with v. The b-
chromatic number of a graph was introduced by R. W. Irving and D. F. Manlove
when considering minimnal proper coloring with respect to a partial order defined
on the set of all partition of vertices of graph. The b-chromatic number of a
graph G, denoted by ¢((G), is the largest integer ¢ such that there exists a proper
coloring for G with ¢ colors in which every color class contains at least one vertex
adjacent to some vertex in all the other color classes and such a coloring is called
b-coloring. So many authors have studied on b-chromatic number. Motivated by
these works we have found b-chromatic number for the graphs P, x B,, Cp, x Cop,
W,,, So(G), Tr, and graphs obtained by duplicating each vertex of path and cycle
by an edge.

2.MAIN RESULTS
Proposition 2.1. For any positive integer n.

4 ifn>4

P, x P,) =
oFe x F) {2 ifn=1,23

Proof. Let uy,ua, ..., u, and vy, vs, ..., v, be the vertices on the paths of length
-1 respectively in P, x F,.
Case 1. n> 4.

Assign the colors 1,2,3,4,2,1,2,1,... and 3,4,1,2,1,2,1,2,. .. for the ver-
tices uy, uz,..., U, and vy, va,...,v,. Then in each color class, there is a vertex
whose all neighbors are in the remaining color classes. Since A(P, x P,) = 3 and
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$(G) < AG) +1, $(C) = 4
Case 2. n=3

Tf 15 and v, are colored by 1 aixd 2 (or 2 and 3 or 1 and 3), then 3 {or 1 or 2)
way be given as color for sither uy or us or vy oF v which does not give a proper
coloring and hence ¢(FP; x Pa) =12
Uase 3, n=2

In this case, P X Py is Cy whigh is of b-chromatic number 2.
Case 4. n=1

In this case, P x Py 18 P, which is of b-chromatic number 2. O

Theorem 2.2. Ifm and n are positive integers such that m = 4 and n > D, then
H{ By, X Py) = 5.

Proof. Let v;, L <1< m and 1 < 7 < n be the vertices of P, x P,. The
first five vertices namely vy1, V12,13, V14 and v; 5 are colored _by 1,234 and 5
. v . f.h . 1 2 3 4 5
respectively. By taking (—1)"" power of the permutation P= 5 451 2]
we may obtain the colors of first five vertices of each (i 1)t row, 2 < i <m. So

the colors of the vertices in the frgt four rows and five colwmnns are respectively.

112 3 4 5
304 5 1 2
51 2 3 4
20 3 4 5 1

From the above array of numbers which are in bold, we cbserve that there
exits a vertex in each color class which is adjacent to at least one vertex in each

other color classes. The colors of the remaining column vertices are given by

Clu, ;) = C(Vir1f-1) fs5<ji<nandi#m

and it gives a proper coloring for P, X F,.
Also ¢ P, X P) S AP x Py +1=5. Therefore, ¢(Pp, X Pp) = 5. [

When m = 3 and n > 7, ¢(Fs x F,) = 5 as in the proof of Theorem 2.2.
When m = 3 and 3 < n < 6, b-¢oloring with 5 colors is not possible since the
number of vertices of degree 4 is less than 5. In this case, the b-coloring with 4

colors are given in Figure 1.
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1 2 3 4 1 2
Figure 1. Py x P

Theorem 2.3. ¢(Cr, x B,) = 5, where m > 4.and n # Tt + 1 t being positive

tnieger.

Proof. When m > 4 and n # 7t-+1,1t is a positive integer, as in the coloring given
in Theorem 2.2, the b-coloring with 5 colors is possible and hence H(Crn X Pp) = 5.
When n = 7t + 1, fill the colors for the first five vertices of each row upton — 1
as in Theorem 2.2 and for the vertices in n** row, the first five vertices will be
colored as 2, 3, 4, 5, 1 respectively. The colors of the remaining column vertices

are givent by

O(T)i+1’j_1) if 5 < j <nand? 7£ 1
C‘(’U}jj_l) if 5 < J <n andi=m.

Clviz) = {

and it gives a proper coloring for C,,, x P,,.

When m = 3 and n > 7, it is possible for giving b-coloring with 5 colors as in
B3 x P, and hence ¢(C3 x B,) =5 When m =3 and 3 < n < 6, b-coloring with
5-colors is not possible since the number of vertices with degree 4 is less than 5.

In this case, the b-coloring with 4-colours are given in Figure 2.
1 2 3 4 1

4 1 2 3 . 4

Flgure 2. Cg X Ps

708



Karpagam JAM Vol. 4 Issue T Apr./13-5ep."13
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Figure 4. Cs x Py

Proposition 2.4. The b-chromatt

(

s 3
‘th{m’fn) - i

4

Proof. Let vy be the central vertex

in W,,. Since the central vertex vy 1
colored by distinguished color. Wi
vertices on cycle as the number

vertex class will be C; = {u}, Cy

]

¢ number for a wheel graph is

and vg, Vs, . . ., Uy be the vertices on the cycle

5 adjacent to all the vertices on the cycle, vy is

j;:n n is even, 3 colors are needed to color these

vertices on the cycle is odd. Therefore the

L
= 1 V2 V4 Vs o - oy ‘Unm'Z}a CS = {'U3,'U5, R 'Un—'l}

and Oy = {v,}. In C1, v, is adjacent to each and every vertex of remaining color

clagses. In Cy, there is a vertex v
In s, there is a vertex v,—1 adjas
C4, vn is adjacent to vq in C, vy i
of degree n — 1 and all the remai
odd, by taking the color classes {J
{4, v7. ., Un}p and Cy = {va, v
colors. Since no vertex other than
than 3,

vy, -

W,, cannot have b-coloring

r]?pg‘ i of degree 3. ¢

adjacent to zy in (4, vs in Cs and v, in Cy,.
cent to vy in Oy ,Wy9 In Oy and v, in Gy, In

Cy and v,—; in Cs. Since only one vertex is

.....

}. the graph W, has a proper b-coloring with 4

the central vertex in the cycle is of degree more

with more than 4 colors. Therefore ¢p(W,) =4

a1
rd
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when n # 5. In W;, by assigning the color 1 for the central vertex and 2, 3, 4 for
any of the three vertices on the cycle, no one of the vertex in the color class (4
and Cy, Cy and Cy or G, and Cj is adjacent to at least one vertex of cach other
classes, when 2 (3 or 4 ) is colored in the remaining vertex. Henee ¢(W,,) < 4.

The b-coloring of W5 with 3 colors is shown in Figure 5.
2

e

o

\\\

Wi
Figure 5

Proposition 2.5. For the triangular belt graph T,,n > 5, #(T,,) = 5.

Proof. Since A(T,) = 4 for n > 3, the maximum value for the b-chromatic
number is 5. Assume n > 5. Let U, U2,. -, U, and vy, ve, ..., v, be the ver
tices on the paths of length n — 1. The edge set of T, is {uiui+1,vivi+1,uivi+1 :
l<i<n—-1}U{uw:1<i< n}. We color the vertices of u; 85 a sequence
{4,1,2,3,5,4,1,2,3.5,. .. } and the vertices v; as a sequence {2,3,5,4,1,2,3,5,4,
1,... }. The vertices in the color classes of the colors 1, 2, 3, 4 and 5 are respec-

tively C) = {Uz,’l«‘muu, <o Us, o, V15, .. }, Cy = {U3,U8,U13, e UL, Vs, g, },
C3 = {u4,ug,u14, . ..,'Ug,'U';,’Ulz, s },04 = {uI,’U‘,G,‘LL“, e ,’U4,'U9,’U14, . } and
Cs = {u53u107u157 <., U3, Ug, Uig, - .. }

In the color classes €, Ca, C3, Cy and C, the vertices Ug,U3,Uq,Vs and vy are
respective members in which they are adjacent to at least one member of the
other color classes. Hence ¢(1,) =5forn > 5 In T4, since the number of
vertices with degree 4 is less than 5, $(Ty) < 4. The b-coloring with 4 colors is

given in Figure 6.
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H

1n T4 also, the number of vertices

igure 6. T

with degree 4 is less than 5. The b-coloring

with 4 colors for T3 is given in Figyre 7.

3 4 H
2 3 2
Higure 7. T3

In Ty, A(T:) = 3 and number of
b-coloring with 3 colors for 1y is gt
1

vertices with degree 3 is less than 4. T he

ven below.
2

T
N

<

Theoremn 2.8. For any graph G, {

Proof. By the definition of S2{G), 4
is a b-coloring with color classes ()
v i O I8 adjacent to at least ong
v, € E(G), then this edge is su

may assign the color C(v;) to y; a1

3

Figure 8. 15

6(52(G)) = ¢(G).

A(S2{G)) = A(G). Let ¢(G) = m. Then there
1, Ca, ..., Oy in which at least one vertex say
member of the remaining C’; §,1 <i<m. I
pdivided by two vertices z;,y; in SH(G). We
d Clv;) to z;. Hence the result follows.
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Corollary 2.7. If each edge of G is subdivided by even number of vertices, then
the resultant graph have a b-chromatic number as much as b-chromatic number

of G.

Corollary 2.8. If ¢(G) > 3, then any subdivision of G has a b-chromatic number

as much as ¢{(G).

m+3  fn>m+5

m+2  fm+2<n<m+4
Theorem 2.9. ¢(F,omKy) =< m+1  ifn=m+1

n if2<n<m

2 ifn=1andn < m.

\

Proof. In P, o mK,, let uy,uy, ..., u, be the vertices on the path of the length
n—1and v;1,v2,...,v,, be the pendent vertices attached to u;, 1 <i < n.
Case 1. n>m+5.

Since A(FP,omK;) = m+2 and there are at least m + 3 vertices having degree
m+ 2,$(F, omK;) < m+ 3. We assign the colors 0,1,2,...,m + 2 as follows:
Color the vertices u; by i mod(m +3),1 <4 < n. Ateachs,2<i <n-—1, the
set of vertices {v;1, %2, .., i} can be colored by m different colors other than
the colors assigned to w;_;,u;, uisy. The vertices U1,1,01,2; - - -, U1m are colored
by m different colors other than the colors given to u; and u, and the vertices
Un1,Un2, - -, Unm ale colored by m different colors other than the colors given
to ,—1 and u,. The vertices uy, us, ..., Um+a are the members of the respective
color classes of the colors 2,3,4,...m + 2,0,1 in which they arc adjacent to.at
least one vertex of each color class Thus qﬁ(Pn o mK 1) =m + 3.

AN NS

Figure 9. F; 0 3K,

Case 2. m+2<n<m+4.
Since A(P, omK;) = m + 2 and the number of vertices with degree m + 2 is

less than m +3, (P, omK;) < m+2. Asin the previous case, color the pendent
vertices by assign the color ¢ mod(m +2) to u;, 1 <4 < n.
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Figure 19. 7 04K

The vertices u1, ug, . . . , mi2 Whith are members of the respective color classes
1,2,3,...,m+ 1,0, are adjacent to|at least one member of the remaining color
classes. Thus ¢(F, o mK;) = m + 2
Case 3. n=m+ 1. ,

In this case, the number of vertices with degree A(P, o mK;) = m + 2 is
m — 1. Therefore, ¢(P, o mK;) <lm + 2. We may color the pendent vertices
as in Case 1 after coloring w; by the color i mod(m + 1),1 < ¢ < n. The
vertices vy, Ug, . . ., Up,, Ums1 Which are the members of respective color classes of
the colors 1,2,3,...,m,0, are adjacent to at least one member of the remaining

color classes. Thus c;b (P o mK}y)

LA A

0 3450 4500 0 15 00

: Fum]

Figure 11. Fy 05K,

Case 4. 2<n<m.

Since the number of vertices In the path is less than or equal to m,
$(PromK;) < n. We assign the coldrs 0,1,2,...,n— 1 to the vertices as follows:
Color the vertices v; by i mod n and giving the colors to the pendent vertices as
in Case 1 which implies that ¢( P, omK;) = n.

A

Figurg 12. P53 04K
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Case 5. n=1andn <m.
When n = 1, by assigning the color 0 to u; and 1 to all the vertices w1, v, . . .,

Vim, the result is obtained

Proposition 2.10. Let G be a graph obtained by duplicating each of the vertex
3 forn>5

of a cycle C;, by an edge. Then ¢(G) =
n  forn=34.

Proof. Let vg, vy, ..., v,_; be the vertices of the cycle and w;u; 2 be the dupli-
cating edge corresponding to the vertex v;, 0 <4 < n — 1. Assume that n > 5
in G. Since A(G) = 4 and n vertices are of degree 4, ¢(G) < 5. Color the
vertices vp, 1, v9,v3 and v, by 0,1,2.3 and 4 respectively. Color the vertices
V4, Vs, - - -, Un—z by 1 and 2 consecutively. The colors other than c(v-1) and e(v;4;)
(the addition is addition modulo n) are to be assigned to the vertices u; 1 and u, o
respectively. Then wp, v1, 9, v3 and v,_, are the members of the color classes of
the colors 0,1,2,3 and 4 respectively in which they are having all the remaining
colors as neighbors. Thus ¢(G) = 5.

Figure 13

Wlhen n = 4, n vertices arc of degree 4 and all the remaining are of degree
2. Therefore ¢(G) < n. Color the vertices vg, vy, v, 3 by the colors 0,1,2,3 and
the vertices w;;1 and w; 9 by c(u;) + 1, ¢(w;) + 2 (the addition is addition modulo
'5) respectively, 0 < i < 3. Then #(G) = 4. When n = 3, only 3 vertices are
of maximum degree and all the remaining vertices are of degree 2. Therefore
#(G) < 3. Asin the case of n =4, we may color the vertices of G by 0, 1 and 2
and hence ¢(G) = 3.
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Proposition 2.11. Let G be a gn

of a path P, by an edge. Then ¢(C

Provf Let ug,wh, ..., 0,1 be the )

cating edge corresponding to the v

aph obtained by duplicating each of the vertex

(5 ifn>7
=4 4 f4<n<oH
{3 f1<n<i

verticas of the path and #; v, 2 be the dupli-

ertex v, 0 <1 <n—1 Assumethatn >3 in

(. n — 2 vertices are having the miaximum degree 4. Therefore ¢(G) < 5. When

n > 7, at least 5 vertices are of de
as follows
Forg<i<n—1,
C(wi)
Cluiy)
¢ f’Um;:?,:‘

ree 4. Assign the colors for the vertices of G

by
-l

== i(rnod 3)
= i + 2(mmod 5) and

=1+ 3(mod 3).

Then v;, 2, vs, ¥g, ¥ are the mem}bers of the color classes of the colors 1,2,3,4

and { raspectively in which they 4

remaining color classes. Thus ¢{G]

degree 4. So ¢(G) < 4. By taking
case of n > 7, 1t follows that ¢(G)

does not exist and a b-coloring wit

re adjacent to at least oue member of all the
i =5 Whend <n < 6, at most 4 vertices of
congruence modulo 4 in the coloring as in the
-~ 4, When 1 < n < 3, b-coloring with 4 colors

h 3 colors is shown in Figure 14.

Z 3 1 2
e —
4 /
J
vy
\ / 5
v ——
1 /’ﬂ\\ 3
J
i N
—%
3 1

Figure 14
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