Regular Elements in a Γ-incline

AR. Meenakshi and S. Anbalagan*

Department of Mathematics, Karpagam University, Coimbatore, INDIA- 641 021.

arm_meenakshi@yahoo.co.in . sms.anbu18@gmail.com

Abstract

Necessary and sufficient conditions for a Γ -incline to be regular are obtained. It is proved that every commutative regular Γ -incline is a distributive lattice. Characterizations of the generalized inverses of an element in a Γ -incline are obtained as a generalization and development of regular elements in an incline.

Key words: Incline, Γ -incline, distributive lattice, regular incline

Mathematics Subject Classification: 15A09, 16Y60

1. Introduction

The notion of incline and their applications are described comprehensively by Cao, Kim and Roush[2]. Kim and Roush have surveyed and outlined the algebraic properties of incline and of matrices over incline [4]. Inclines are generalization of Boolean Algebra, Fuzzy Algebra and a special type of semiring. Inclines are additively idempotent semirings in which products are less than are equal to either factor. An element a in an incline R is said to be regular if there exists $x \in R$ such that axa = a, x is called the g-inverse of a. It is demoted as a- and the set of all g-inverses denoted as $a\{1\}$. An incline R is said to be a regular incline if every element of R is regular [4].

The concept of Γ -ring introduced by Nobusawa [7] as a generalization of ring was later developed by Barnes [1]. Recently Mukherjee has studied about prime ideals, idempotency and commutativity on Γ -rings in [6].

In [3], Chinram and Siammai have discussed about Γ -semigroup S, if a regular element in \mathcal{D} -class then every element of \mathcal{D} -class are regular and for each \mathcal{L} -class and \Re -class contains at least one idempotent if \mathcal{D} -class is regular.

In this paper, we introduce the concept of a Γ -incline as an extension of an incline [2] and generalization of Γ -ring [1,6]. We establish some characterization of regular elements in a Γ -incline. In section 2, we present the basic definition and results required

^{*-}Paper presented in the Karpagam University Annual Research Congress Dec 7-10, 2009, Coimbatore-21.

on inclines and Γ -ring. In section 3, equivalent conditions for regularity of an element in a Γ -incline are obtained as a generalization of regular elements found in our earlier work [5]. For regular elements in a Γ -incline it is proved that equality of right ideals coincide with equality of left ideals.

2. Preliminaries

In this section, we shall present some definitions found in [1,3 and 6].

Definition 2.1

A Γ -ring M is said to be commutative if $|a\gamma b| = b\gamma a$, for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 2.2

An element e in a Γ -ring is said to be γ -idempotent (or) simply an idempotent for fixed Γ , if there exists $\gamma \in \Gamma$ such that $e\gamma e = e$.

Definition 2.3

An element a of a Γ -semigroup S is said to be regular if there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha \times \beta a$. A regular Γ -semigroup is a Γ -semigroup in which each element of S is regular.

Definition 2.4

A subset A of the Γ -ring M is a right(left) ideal of M if A is an additive subgroup of M and A Γ M = { $a\alpha c / a \in A$, $\alpha \in \Gamma$, $c \in M$ } (M Γ A) is contained in A. If A is both a left and a right ideal then A is a two-sided ideal, or simply an ideal of M.

3. Regular elements in Γ-incline

In this section, we introduce the concept of a Γ -incline and we derive a set of equivalent conditions for regularity of an element in a Γ -incline. We exhibit that a regular commutative Γ -incline is a distributive lattice. The equality of right (left) ideals of a pair of elements in a regular Γ -incline reduces to equality of the elements.

Definition 3.1

Let M and Γ are additive idempotent abelian semigroup and a mapping M x Γ x M \rightarrow M, written as $(a,\alpha,b) \rightarrow (a\alpha b)$. Then M is called a Γ -incline if M satisfies the following:

$$x+y=y+x \ , \ x+(y+z)=(x+y)+z \ , \ x\alpha(y+z)=x\alpha y+x\alpha z \ , \ (y+z)\alpha x=y\alpha x+z\alpha x$$

$$x\alpha(y\beta z)=(x\alpha y)\beta z \ , \ x+x=x \ , \ x+x\alpha y=x \ , \ y+x\alpha y=y$$

for all $x,y,z \in M$ and $\alpha,\beta \in \Gamma$.

In particular for $M = \Gamma$, it reduces to the definition of an incline [4]. Let (M, \leq) is a Γ -incline with order relation defined as $x\alpha y \leq x$ if and only if $x+x\alpha y = x$, simply M denotes the Γ -incline with order relation \leq .

Example 3.2

Let M be an arbitrary incline and let Γ be a semigroup. Define a mapping $M \times \Gamma \times M \to M$ by $a\alpha b = ab$, for all $a,b \in M$ and $\alpha \in \Gamma$. It is easy to see that M is a Γ -incline. Thus an incline can be considered to be a Γ -incline.

Definition 3.3

Let M be a Γ -incline. An element a in M is said to be regular if there exist $x \in M$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x \beta a = a$ and x is called a 1-inverse of a, denoted as a^{-} .

Remark 3.4

All idempotent elements are regular in a Γ -incline for some Γ .

Definition 3.5

An element $a \in M$ is called anti-regular if there exist an element $x \in M$ and $\alpha, \beta \in \Gamma$, such that $x\beta a\alpha x = x$ and x is called a 2-inverse (or) anti-inverse of a.

Definition 3.6

For $a \in M$, if there exists $x \in M$ and $\alpha, \beta \in \Gamma$, such that $a\alpha x\beta a = a$, $x\beta a\alpha x = x$ and $a\alpha x = x\beta a$, then x is called the Group inverse of a. The Group inverse of a is a commuting 1-2 inverse of a.

Property 3.7

For x, y in a
$$\Gamma$$
-incline M, $x + y \ge x$ and $x + y \ge y$.
For $x + y = (x + x) + y = x + (x + y)$ and $x + y = x + (y + y) = (x + y) + y$
Thus $x + y \ge x$ and $x + y \ge y$.

Property 3.8 For $x,y \in M$ and $\alpha \in \Gamma$, $x\alpha y \le x$ and $x\alpha y \le y$.

Lemma 3.9

Let $a \in M$ be regular. Then $a = a\alpha x = x\beta a$ for all $x \in a\{1\}$ and for some $\alpha, \beta \in \Gamma$.

Proof

```
If a is regular, then by Property (3.8) a = a\alpha x \beta a \le a\alpha x \le a
```

Therefore $a\alpha x = a$.

Similarly, from $a \le x\beta a \le a$, it follows that $a = x\beta a$.

Thus, $a = a\alpha x = x\beta a$ for all $x \in a\{1\}$.

Lemma 3.10

For $a \in M$, a is regular if and only if a is d-idempotent and β -idempotent.

Proof

Let $a \in M$ be regular. Then by Lemma (3.9) $a = a\alpha x = x\beta a$ for all $x \in a\{1\}$.

 $a = a\alpha x\beta a = (a\alpha x)\beta a = a\beta a$.

 $a = a\alpha x\beta a = a\alpha(x\beta a) = a\alpha a.$

Thus a is α -idempotent and β -idempotent.

Converse is trivial.

Proposition 3.11

If a is regular, then a is the smallest g-inverse of a, that is, $a \le x$ for all $x \in a\{1\}$.

Proof

Let a be regular, then by Lemma (3.10), $a \in a\{1\}$. By Lemma (3.9) $a = a\alpha x$ for all $x \in a\{1\}$. Hence by Property (3.8) $a \le x$. Thus a is the smallest g-inverse of a.

Preposition 3.12

Let M be a commutative Γ -incline, M is regular then M is a distributive lattice.

Proof

Let M be a regular Γ -incline then by Lemma (3.10) every element of M is α -idempotent and β -idempotent for some α , $\beta \in \Gamma$. For any x, y \in M, $(x + y)\alpha(x + y) = x\alpha x + x\alpha y + y\alpha x + y\alpha y = x + x\alpha y + y\alpha x + y = x + y$ (By Definition (3.1))

Similarly we can prove for $(x + y)\beta(x + y) = x+y$.

x + y is α -idempotent and β -idempotent and hence x + y is a regular element in M

 $(x\alpha y)\alpha(x\alpha y) = x\alpha(y\alpha x)\alpha y = (x\alpha x)\alpha(y\alpha y) = x\alpha y$

Similarly we can prove for $(x\alpha y)\beta(x\alpha y) \neq x\beta y$.

xay is a—idempotent and β —idempotent and hence xay is a regular element in M for some $\alpha,\beta\in\Gamma$

By Property (3.7) $x + y \ge x$ and $x + y \ge y$

 $x + y = least upper bound of {x, y} in M$

Now, let us take an element $z \in M$, $z \le x$ and $z \le y$ then, $z\alpha z \le x\alpha y \Rightarrow z \le x\alpha y$.

 $x\alpha y = \text{greatest lower bound of } \{x, y\} \text{ in } M.$

Thus M is a distributive lattice.

Theorem 3.13

For $a \in M$, the following are equivalent:

- (i) a is regular
- (ii) a is α -idempotent and β -idempotent for some $\alpha,\beta \in \Gamma$
- (iii) $a\{1,2\} = \{a\}$
- (iv) Group inverse of a exists and coincides with a
- (v) $v(\beta a)2 = a = (a\alpha)2$ u for some $u, v \in a\{1\}$ and for some $\alpha, \beta \in \Gamma$.

Proof

(i) \Rightarrow (ii) This is precisely Lemma (3.10).

To prove the theorem it is enough to prove the following implications:

$$(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) \text{ and } (i) \Rightarrow (v) \Rightarrow (ii).$$

(ii) \Rightarrow (iii) If a is α -idempotent and β -idempotent, then $a \in a\{1\}$. For any $x \in a\{1, 2\}$ we have $x = x\beta a\alpha x$ and by Lemma (3.9) we get $x = (x\beta a)\alpha x = a\alpha x = a$. Therefore $a\{1, 2\} = \{a\}$

Thus (iii) holds.

- (iii) \Rightarrow (iv) If $a\{1,2\} = \{a\}$ then a is the only commuting 1-2 inverse of a. Therefore by Definition (3.6) the Group inverse of a exists and coincides with a.
- $(iv) \Rightarrow (i)$ This is trivial.

(i)
$$\Rightarrow$$
 (v) Let a be regular, then by Lemma (3.9), for some ν , $u \in a\{1\}$, $a = (a\alpha\nu)\beta a = (\nu\beta a)$
 $\beta a = \nu(\beta a)^2$

Similarly $a = (a\alpha)^2 u$

Thus (v) holds.

(v) \Rightarrow (ii) Let $a = v(\beta a)^2$ and $a = (a\alpha)^2$ u for some $v, u \in a\{1\}$.

By Property (3.8), $a = v(\beta a)^2 \le v\beta a \le a$

$$\Rightarrow a = \nu \beta a = \nu (\beta a)^2$$

$$a = \nu(\beta a)^2 = (\nu \beta a)\beta a = a\beta a$$

Therefore a is β -idempotent.

In similar manner we have α -idempotent.

Thus (ii) holds.

Hence the proof.

Lemma 3.14

Let M be a regular Γ -incline. For $a,b,c \in M$ and $\alpha,\beta \in \Gamma$ the following hold:

- (i) $b = y\alpha a \Rightarrow b \Rightarrow b\alpha a \Rightarrow M\Gamma b \subseteq M\Gamma a$
- (ii) $c = a\beta x \Rightarrow c \Rightarrow a\beta c \Rightarrow c\Gamma M \subseteq a\Gamma M$.

Proof

(i) Let $b = y\alpha a$, since a is regular. By Lemma (3.10)

$$b\alpha a = y\alpha(a\alpha a) = y\alpha a = b$$

Thus $b = y\alpha a \Rightarrow b\alpha a = b$

Let $b\alpha a = b$ then for $z \in M \Gamma b$

 $z = x \gamma b$ for some $x \in M$ and $\gamma \in \Gamma$ = $(x \gamma b)\alpha a \in M \Gamma a$

Thus $b = b\alpha a \Rightarrow M \Gamma b \subseteq M \Gamma a$

Since b is regular, by Lemma (3.9)

 $b = b^{-}ab \in M \Gamma b$, since $M \Gamma b \subseteq M \Gamma a$

 $b = y\alpha a$ for some $y \in M$.

Thus (i) holds.

(ii) It can be proved along the same lines as of (i) and hence omitted.

Theorem 3.15

For a,b in a regular Γ -incline and $\alpha, \beta \in \Gamma$, we have the following:

$$M\Gamma a = M\Gamma b \Leftrightarrow a\Gamma M = b\Gamma M \Leftrightarrow a = b.$$

Proof

Since $M\Gamma a = M\Gamma b$, implies $M\Gamma a \subseteq M\Gamma b$ and $M\Gamma b \subseteq M\Gamma a$

By Lemma (3.14) (i) we have

 $M \Gamma a \subseteq M \Gamma b \Rightarrow a = a\alpha b \Rightarrow a \le b$

(By Property (3.8))

and M Γ b \subseteq M Γ a \Rightarrow b = b β a \Rightarrow b \leq a

(By Property (3.8))

Therefore a = b. In a similar manner we can show $a\Gamma M = b\Gamma M \Rightarrow a = b$. On the other hand a = b automatically implies $M\Gamma a = M\Gamma b$ and $a\Gamma M = b\Gamma M$.

4. Conclusion

The main results in the present paper are the generalization of the available results shown in the reference for elements in a regular incline [5].

We have introduced the concept of Γ -incline as an extension of an incline. An element a is regular if and only if a is α -idempotent and β -idempotent and a is the only 1-2 inverse of a. For elements in a Γ -incline it is proved that equality of right(left) ideals coincide with equality of elements.

References

- [1] W.E.Barnes, On the Γ -rings of Nobusawa, Pacific J. Math, 18(3) (1966) 411-422.
- [2] Z.Q.Cao, K.H.Kim, F.W.Roush, Incline Algebra and Applications, John Wiley and sons, New York 1984.
- [3] R.Chinram, P.Siammai, On Green's Relations for Γ-Semigroups and Reductive Γ-Semigroups1, Int. J. Algebra, 2(4) (2008) 187-195.
- [4] K.H.Kim, F.W.Roush, Inclines and Incline Matrices: a survey, Linear Algebra Appl., 379 (2004) 457-473.
- [5] AR. Meenakshi, S. Anbalagan, On Regular Elements in an Incline, Int. J. Mathematics and Mathematical Sci. vol. 2010 (2010), Article ID 903063, 12 pages.
- [6] R.N.Mukherjee, Some Results on Γ-rings, Indian J. Pure and Applied Math., 34(6) (2003) 991-994.
- [7] N.Nobusawa, On a generalization of the ring theory, Osaka J. Math., (1964) 181-189.