ON α GENERALIZED CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

¹S. Maragathavalli and ²D. Vinidhini

Abstract: In this research paper, we are introducing the concept of α -generalized closed sets in Ideal topological space and discussed the characterizations and the properties of α -generalized closed sets in Ideal topological space.

Keywords: Ig closed sets, $I\hat{g}$ - closed set, αIg - closed sets, Semi- I closed set, Pre- I closed set, αIg - closed set, b- I closed set.

1. INTRODUCTION

The notion of α -open sets was introduced and investigated by Njastad[1]. By using α -open sets, Mashhour et al.[2] defined and studied the concept of α -closed sets, α -closure of a set, α -continuity and α -closedness in topology. Ideals in topological spaces have been considered since 1930. This topic has won its importance by the paper of Vaidyanathaswamy[3]. It was the works of Newcomb[4], Rancin[5], Samuels and Hamlet and Jankovic([6, 7, 8, 9, 10]) which motivated the research in applying topological ideals to generalize the most basic properties in General Topology.

2. PRELIMINARIES

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X, which satisfies the following two conditions:

- (i) If A € I and B⊆A implies B € I
- (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ [11].

An ideal topological space is a topological space (X, τ) with an ideal I on X and it is denoted by (X, τ, I) . Given a topological space (X, τ) with an ideal I on X and if $\rho(X)$ is the set of all subsets of X, a set operator $(*): \rho(X) \to \rho(X)$, called a local function [1I] of A with respect to τ and I, is defined as follows: for $A \subseteq X$, $A^*(I,\tau) = \{x \in X/U \cap A \not\in I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau/x \in U\}$. We simply write A^* instead of $A^*(I,\tau)$. For every Ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau)$

Department of Mathematics, Karpagam University, Coimbatore, Tamil Nadu, India E-mail smvalli@rediffmail.com

²Department of Mathematics, SVS College of Engineering, Coimbatore, Tamil nadu. India. E-mail: vinudurai@yahoo.com

)={U-i/U $\in \tau$ &i $\in I$ }. But in general (I, τ) is not always a topology. Additionally cl*(A)=A \cup A* defines a kuratowski closure operator for τ *(I). If A \subseteq X, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and int*(A) denote the interior of A in (X, τ *). A subset A of an ideal space (X, τ , I) is *-closed(resp. *-dense in itself) if A* \subseteq A (resp. A \subseteq A*).

Definition 2.1[13]:

A subset A of a topological space (X, τ) is called a generalized closed set (briefly g-closed) if $cl(A) \subseteq A$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.2[15]:

A subset A of a topological space (X, τ) is called a α -generalized closed set (briefly αg -closed set) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.3[15]:

A subset A of a topological space (X, τ) is called $\hat{\mathbf{g}}$ -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Definition 2.4[15]:

A subset A of a topological space (X, τ) is said to be

- (i) preclosed set if cl(int(A))⊆A.
- (ii) semiclosed set if $int(cl(A)) \subset A$.
- (iii) α -closed set if $cl(int(cl(A))) \subseteq A$
- (iv) b-closed set if $cl(int(A)) \cup int(cl(A)) \subseteq A$.

Definition 2.5[12]:

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be Ideal generalized closed set (briefly lg-closed set) if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.6 [14]:

A subset A of an ideal topological space (X, \tau, I) is said to be

- (i) pre -I-closed set if cl*(int(A)) ☐A.
- '(ii) semi-I- closed set if int(cl*(A)) \(A. \)
- (iii) α -I-closed set if $c^*l(int(cl^*(A))) \subseteq A$.
- (iv) b-1-closed set if $cl^*(int(A)) \cup int(cl^*(A)) \subseteq A$.

Definition 2.7[11]:

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be Ig-closed set if $A^{\bullet} \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Lemma 2.8:[12]

Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (i) $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (ii) $A^{\bullet} = cl(A^{\bullet}) \subseteq cl(A)$,
- (iii) $(A^*)^* \subseteq A^*$,
- (iv) $(A \cup B)^* = A^* \cup B^*$,
- (v) $(A \cap B)^* \subseteq A^* \cap B^*$.

3.a-IDEAL GENERALIZED CLOSED SETS

Definition 3.1:

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be α -Ideal generalized closed set (briefly α Ig- closed set) if A \subseteq U whenever $A \subseteq$ U and U is α -open.

Example 3.2:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,X,\{a\},\{b\},\{a,b\}\}$ and $I=\{\Phi,\{b\}\}$. The set $A=\{a,c\}$, where $A^{\bullet}=\{a,c\}$ is an αIg -closed set.

Definition 3.3:

Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be α -Ideal generalized open set (briefly α Ig- open set) if X-A is α Ig- closed set.

Theorem 3.4:

Every *-closed set is alg-closed set but not conversely.

Proof.

Let A be a *-closed, then $A \subseteq A$. Let $A \subseteq U$, and U is α -open. This implies $A \subseteq U$. Hence A is α Ig-closed.

Example 3.5:

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,X,\{a\},\{b,c\}\}$ and $I=\{\Phi,\{c\}\}$. It is clear that $A=\{b\}$ is alg-closed set since $A^*=\{b,c\}\subseteq U$ where U is a-open. But A is not a *-closed set.

Remark 3.6:

alg- closed set and al-closed set are independent to each other, as seen from the following examples.

Example 3.7:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{b,c\},X\}$ and $I=\{\Phi,\{c\}\}$. Clearly, the set $A=\{b\}$ which is an αI_{σ} -closed set is not an αI_{σ} -closed set since $cl^{\bullet}(int(cl^{\bullet}(A)))=\{b,c\}\not\subset A$.

Example 3.8:

Remark 3.9:

alg- closed set and semi I-closed set are independent to each other, as seen from the following examples.

Example 3.10:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi, \{a\}, \{b,c\}, X\}$ and $I=\{\Phi, \{c\}\}$. Clearly, the set $A=\{b\}$ is an αIg -closed set but not semi I-closed set since $\operatorname{int}(\operatorname{cl}^*(A))=\{b,c\}\not\subset A$.

Example 3.11:

Let $X=\{a,b,c\}$ with topology $\tau=\{\Phi,\{a\},\{b\},\{a,b\},X\}$ and $I=\{\Phi,\{a\}\}$. It is clear that $A=\{b\}$ which is semi I-closed set. But A is not an alg-closed set since $A=\{b,c\}\not\subset U$.

Remark 3.12:

Every pre I-closed set need not be an alg-closed set.

Example 3.13:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{a,c\},X\}$ and $I=\{\Phi,\{b\}\}$. Clearly, the set $A=\{c\}$ is pre I- closed set but not an α Ig- closed set since $A^*=\{b,c\}\not\subset U$.

Remark 3.14:

alg-closed set and b l-closed set are independent to each other, as seen from the following examples.

Example 3.15:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{b,c\},X\}$ and $I=\{\Phi,\{c\}\}$. Clearly, the set $A=\{a,b\}$ is an α lg-closed set, but not a β I-closed set, since β climits in β climits β is an β -closed set, but not a β -closed set, since β -climits β -cl

Example 3.16:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi, \{a\}, \{a,c\}, X\}$ and $I=\{\Phi, \{b\}\}$. It is clear that $A=\{c\}$ is bI-closed set. But A is not an alg-closed set since $A^*=\{b,c\} \subset U$.

Theorem 3.17:

Every alg-closed set is an Ig-closed set but not conversely.

Proof:

Let $A \subseteq U$ and U is open. Clearly every open set is α -open. Since A is α Ig-closed set, $A^{\bullet} \subseteq U$, which implies that A is an Ig-closed set.

Example 3.18:

Let $X=\{a,b,c\}$ with topology $\tau = \{\Phi,\{a\},\{a,c\},X\}$ and $I=\{\Phi,\{b\}\}$. Clearly, the set $A=\{a,b\}$ is lg-closed set but not an αlg -closed set since $A = X \not\subset U$.

Theorem 3.19:

Every I g-closed set is an αlg-closed set.

Proof:

Let $A \subseteq U$ and U is α -open. Clearly, every α -open set is semi-open. Since A is I \widehat{g} -closed set, $A \subseteq U$, which implies that A is an $\alpha I g$ -closed set.

Theorem 3.20:

If (X, τ, I) is an ideal space, then every αIg -closed, which is α -open is *-closed set.

Proof:

Let A be an α Ig-closed and α -open set. Then A \subseteq A implies A $\stackrel{\bullet}{\subseteq}$ A since A is α -open. Therefore, A is *-closed set.

References:

- 1. O.Njastad, On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.
- A.S. Mashhour, I.N.Hasanein and S.N. El-Deeb,α-continuous and α-open mappings, Acta Math.Hungar,41(1983),213-218.
- R.Vaidynathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. Math.Sci., 20(1945), 51-61.
- 4. R.L.Newcomb, Topologies which are compact modulo an ideal Ph.D, Dissertation. Univ. Santa Barbara, 1967.
- 5. D.V. Rancin, Compactness modulo an ideal, Societ Math.Dokl.,13,193-197.1972.
- 6. T.R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita., (7), 4-B, 849-861,1990.
- T.R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll. Un. Mat. Ita., 7, 863-874, 1990.
- 8. T.R. Hamlett and D. Jankovic, Ideals in General Topology and Applications Midletown, CT, 1998), 115-125, Lecture Notes in Pure and Appl. Math. Dekker, New York, 1990.

- D.Jankovic and T.R. Hamlett, New topology from old via ideals, Amer. Math. Month., 97. 295-310, 1990.
- 10. T.R. Hamlett and D. Jankovic, Compacible extensions of ideals, Boll. Un. Mat. Ita., 7,453-465, 1992.
- 11. J.Antony Rex Rodrigo, O.Ravi, A.Nalini ramalatha, \hat{g} -Closed sets in ideal topological spaces, Method of functional analysis and topology, Vol. 17(2011), no. 3,pp-274-280.
- 12. O.Ravi, S. Tharmar, J. Antony Rex Rodrigo and M. Sangeetha, Between *-closed sets and I-g -closed sets in ideal topological spaces, International Journal of Advances In Pure and Applied Mathematics, vol 1(2011), 38-51.
- 13. A.Pushpalatha, S.Eswaran and P.Rajarubi, τ*-Generalized closed sets in Topological Spaces, Proceedings of the world congress on Engineering 2009, Vol II, WCF 2009, July 1-3, 2009, London, U.K.
- 14. Erdal Ekict, On Pre –I-Open sets, Semi-I-Open sets and b-I-Open sets in Ideal topological spaces, Acta Universitatis Apulensis ISSN: 1582-5329, No. 30/2012, pp. 293-303.
- 15. P. Sundaram, N. Rajesh, M. Lellis Thivagar, Zbigniew Duszynski, On \hat{g} -closed sets in topological spaces, Mathematica Pannonica, 18/1 (2007), 51-61.