Orderings on Generalized Regular Fuzzy Matrices

AR. Meenakshi and P. Poongodi

Department of Mathematics, Karpagam University,

Coimbalore -641 021, India.

arm_meenakshi@yahoo.co.ip, poongodi_happi@rediffmail.com

Abstract

In this paper, a special type of ordering for k - regular fuzzy matrices is introduced as a generalization of the minus partial ordering for regular fuzzy matrices. A set of equivalent conditions for a pair of k - regular matrices to be under this ordering are obtained. We exhibit that this ordering is preserved under similarity relation.

Key words: Fuzzy matrix, Regular, k - regular, Generalized inverse.

Mathematics Subject Classification: 15B15, 15A24.

1. Introduction

We deal with fuzzy matrices that is, matrices over the fuzzy algebra \mathcal{F} with support [0,1] and fuzzy operations $\{+,..\}$ defined as $a+b=\max\{a,b\}$, $a\cdot b=\min\{a,b\}$ for all a, $b\in\mathcal{F}$. Let $\mathcal{F}_{m,n}$ be the set of all mxn fuzzy matrices over \mathcal{F} . In short \mathcal{F}_n denotes \mathcal{F}_{nn} . The row space R(A) is the subspace of $\mathcal{F}_{1,n}$ generated by the rows of A, the column space C(A) is defined in the dual fashion. A matrix $A\in\mathcal{F}_{mn}$ is said to be regular if there exists $X\in\mathcal{F}_{nm}$ such that $A\times A=A$, X is called a generalized inverse (ginverse) of A. Let $A\{1\}$ denotes the set of all g-inverses of A.

A Matrix $A \in \mathcal{F}_n$ is said to be right (left) k- regular if there exists $X(Y) \in \mathcal{F}_n$, such that $A^k X A = A^k$ (AYA^k = A^k), X(Y) is called a right (left) k-g inverse of A, where k is a positive integer. Let $A_r\{1^k\}$ and $A_r(1^k)$ be the set of all right k-g inverses and left k-g inverses of $A \in F_n$. In [3] it has been proved that right k-g inverse and left k-g inverse for a fuzzy matrix are distinct. In this paper, by a k-regular matrix, we mean that it is either right or left k-regular. If A is k-regular, then it is h regular for all $h \ge k$. Let $\mathcal{F}_n^{(k)}$ denotes the set of all k-regular fuzzy matrices. Let $A\{1^k\} = A_r\{1^k\} \ U A_r(1^k)$ be the set of all k-g inverse of A. In particular, for k=1, it reduces to a regular matrix and set of all its g-inverses. If A is k – potent, that is, k is the smallest positive integer such that $A^k = A$, then k regularity coincides with regularity. If A^k is regular then A is k-regular, for if A^k is regular, then there exists $X \in \mathcal{F}_n$ such that $A^k X A^k = A^k$ and hence $A^k Y A = A^k = AZA^k$ for $Y = XA^k-1$ and $Z=A^k-1$ X. In this paper, we introduce a special type of ordering for k-regular

fuzzy matrices as a generalization of the minus ordering studied in [2] for regular fuzzy matrices.

In the sequel, we shall make use of the following results found in [1].

Lemma 1.1

For A, $B \in \mathcal{F}_n$,

$$R(A) \subseteq R(B) \Leftrightarrow A = XB \text{ for some } X \in \mathcal{F}_n$$

$$C(A) \subseteq C(B) \Leftrightarrow A = BY \text{ for some } Y \in \mathcal{F}_n$$
.

Lemma 1.2

For
$$A \in \mathcal{F}_n^{(k)}$$
 and $X \in \mathcal{F}_n$ $X \in A_r\{1^k\} \Leftrightarrow X^T \in A_r^{(1^k)}$

2. Orderings on k-Regular Fuzzy Matrices

In this section, we define a special type of ordering and called it as k – ordering for k-regular fuzzy matrices. Some basic properties on a pair of k – regular fuzzy matrices under this ordering are discussed.

Definition 2.1

For $A \in \mathcal{F}_n^{(k)}$, $B \in \mathcal{F}_n$; the ordering denoted as A < B is defined as $A < B \Leftrightarrow A^k X = B^k X$ for some $X \in A_r\{1^k\}$ and $YA^k = YB^k$ for some $Y \in A_r\{1^k\}$

In particular for k = 1, Definition (2.1) reduces to minus ordering on fuzzy matrices found in [2]. If $X \in A_r\{1^k\}$, then X need not be a g – inverse of A^k . This is illustrated in the following example.

Example 2.1

Let A =
$$\begin{pmatrix} 0.3 & 0.7 \\ 0.5 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 0.5 & 0.3 \\ 0.3 & 0.5 \end{pmatrix}$

For
$$X = \begin{pmatrix} 0.3 & 0.7 \\ 0.5 & 0 \end{pmatrix}$$
, $A^2XA = A^2$. Hence $X \in A_r\{1^2\}$ and A is 2 -regular, but A^2XA^2 herefore X is not in $A^2\{1\}$. Thus X is a $2-g$ inverse of A but X is not a g -inverse

 \neq A², therefore X is not in A²{1}. Thus X is a 2 – g inverse of A but X is not a g – inverse for A².

Lemma 2.1

For $A{\in \,}{\mathfrak F}_{_n}{}^{(k)}$ and $B\,\in\,{\mathfrak F}_{_n}$; the following are equivalent.

(i)
$$A \leq B$$

(ii)
$$A^k = B^k X A = AYB^k$$
 for some $X, Y \in A \{1^k\}$

Proof

(i)
$$\Rightarrow$$
 (ii)
 $A < B \Rightarrow A^k X = B^k X \text{ for some } X \in A_r \{1^k\}$
and $Y A^k = Y B^k \text{ for some } Y \in A_r \{1^k\}$
Now, $A^k = (A^k X) A = B^k X A \text{ for some } X \in A_r \{1^k\}$
 $A^k = A (Y A^k) = A Y B^k \text{ for some } Y \in A \{1^k\}$
 $A^k = B^k X A = A Y B^k \text{ for some } X Y \in A \{1^k\}$

Thus (ii) holds.

$$(ii) \Rightarrow (i)$$

Let
$$Z = XAX$$
 for $X \in A \setminus \{1^k\}$

$$A^kZA = A^k(XAX)A = (A^kXA)XA = A^kXA = A^k$$

$$\Rightarrow Z \in A_{1}\{1^{k}\}$$

Similarly, $AZA^k = A^k$ for Z = YAY for $Y \in A$, $\{1^k\}$

$$\Rightarrow Z \in A_i\{1^k\}$$

Thus, for $X \in A\{1^k\}$, $Z = XAX \in A_r\{1^k\}$ when $X \in A_r\{1^k\}$ and $Z = XAX \in A_r\{1^k\}$ when $X \in A_r\{1^k\}$.

Now,
$$A^{k}Z = A^{k}(XAX) = (A^{k}XA)X = A^{k}X = (B^{k}XA)X = B^{k}(XAX) = B^{k}Z$$

Hence $A^kZ = B^kZ$ for some $Z \in A$, $\{1^k\}$.

Similarly, $ZA^k = ZB^k$ for some $Z \in A_1\{1^k\}$.

Therefore A < B. Thus (i) holds.

Hence the Theorem.

Lemma 2.2

For A, B $\in \mathcal{F}_n^{(k)}$

- (i) If B is right k-regular and $R(A^k) \subseteq R(B^k)$ then $A^k = A^k B \cdot B$ for each right k-g inverse B of B.
- (ii) If B is left k-regular and $C(A^k) \subseteq C(Bk)$ then $A^k = BB \cdot A^k$ for each left k-g inverse B of B.

Proof

(i)
$$R(A^k) \subseteq R(B^k) \Rightarrow A^k = XB^k$$
 (By Lemma 1.1)
 $= XB^kB \cdot B$ (for each $B \in B_r\{1^k\}$)
 $= A^kB \cdot B$

Thus (i) holds.

(ii)
$$C(A^k) \subseteq C(B^k) \Rightarrow A^k = B^k Y$$
 (By Lemma 1.1)

$$= BB^*B^k Y$$
 (for each $B \in B_1\{1^k\}$)
$$= BB^*A^k$$

Thus (ii) holds.

Theorem 2.1

For $A,B \in \mathcal{F}_n^{(k)}$, if A < B then $R(A^k) \subseteq R(B^k)$, $C(A^k) \subseteq C(B^k)$ and $A^k X B = A^k = BYA^k$ for each $X \in Br\{1^k\}$ and for each $Y \in B_r\{1^k\}$.

Proof

$$A \le B \implies A^k = AY B^k = B^k X A$$
 (By Lemma 2.1)
 $\Rightarrow A^k = VB^k = B^k U$, where $V = AY$ and $U = XA$
 $\Rightarrow R(A^k) \subseteq R(B^k)$ and $C(A^k) \subseteq C(B^k)$ (By Lemma 1.1)
 $A^kXB = A^k = BYA^k$ for each $X \in B$, $\{1^k\}$ and for each $Y \in B$, $\{1^k\}$ (By Lemma 2.2)

Theorem 2.2

For $A,B \in \mathcal{F}_n^{(k)}$, the following hold.

- (i) $A \leq A$
- (ii) $A \le B$ and $B \le A$ then $A^k = B^k$
- (iii) $A \le B$ and $B \le C$ then $A \le C$

Proof

- (i) A < A is trivial.
- (ii) $A \le B \Rightarrow A^k = B^k XA \text{ for } X \in A_r\{1^k\}$ (By Lemma 2.1) $B < A \Rightarrow B^k = BY A^k \text{ for } Y \in A_r\{1^k\}$ (By Lemma 2.1)

Now, $A^k = B^k XA = (BYA^k)XA = BY(A^k XA) = BYA^k = B^k$

Hence $A \le B$ and $B \le A \Rightarrow A^k = B^k$

(iii)
$$A \le B \Rightarrow A^k = A^k B - B = BB - A^k$$
 (By Theorem 2.1 and Lemma 2.2(i)) $B \le A \Rightarrow B^k = C^k B - B = BB - C^k$ (By Theorem 2.1 and Lemma 2.2(i))

Let $Z = B \cdot BX$ for $B \cdot \in B \setminus \{1^k\}$ and $X \in A \setminus \{1^k\}$

Then $A^k ZA = (A^k B - B)XA = A^k XA = A^k$

Therefore $Z \in A_r\{1^k\}$

If $Z = YBB^{-}$ for $B^{-} \in B_{1}\{1^{k}\}$ and $Y \in A_{1}\{1^{k}\}$ then it follows that $AZA^{k} = A^{k}$

Therefore $Z \in A$, $\{1^k\}$.

Since A < B and B < C, applying Theorem 2.1, we have

$$A^k Z = A^k (B-BX)$$

$$= (A_k B B X)$$

$$=A^kX$$

(By Theorem 2.1)

 $= B_k X$

$$= (C_k B B)X$$

(By Lemma 2.1)

 $= (BB \cdot B^k)x$

$$=C^{k}\left(B\cdot BX\right)$$

$$= C^k Z$$
 for some $Z \in A_r \{1^k\}$.

and $ZA^k = Z C^k$ for some $Z \in A$, $\{1^k\}$ can be proved in a similar manner.

Hence $Z \in A\{1^k\}$ with $A^k Z = C^k Z$ and $ZA^k = Z C^k$. Therefore A < C.

Remark 2.1

In particular for k = 1, Theorem(2.2) reduces to Theorem(2.2) of [2], that is, the minus ordering is a partial ordering on regular matrices.

3. Properties of k-ordering

In this section, we shall derive some basic properties of k – ordering on k – regular fuzzy matrices that include the results found in [2] as a special case.

Proposition 3.1

For
$$A, B \in \mathcal{F}_n^{(k)}$$
, $A \leq B \Leftrightarrow A^T \leq B^T$

Proof

$$A \le B \Leftrightarrow A^k A^r = B^k A^r \text{ for some } A^r \in A_r\{1^k\}$$

and $A^r A^k = A^r B^k \text{ for some } A^r \in A_r\{1^k\}$

By Lemma (1.2), $A \in A$, $\{1^k\} \Leftrightarrow (A^-)^T \in A$, $\{1^k\}$.

$$A^{k}A^{-} = B^{k} A^{-}$$

$$\Leftrightarrow (A^{k} A^{-})^{T} = (B^{k} A^{-})^{T}$$

$$\Leftrightarrow (A^{-})^{T} (A^{k})^{T} = (A^{-})^{T} (B^{k})^{T}$$

$$\Leftrightarrow (A^{T})^{-} (A^{k})^{T} = (A^{T})^{-} (B^{k})^{T}$$

Thus
$$A^k A^- = B^k A^- \Leftrightarrow (A^T)^- (A^k)^T = (A^T)^- (B^k)^T$$

Similarly
$$A^{-}A^{k} = A^{-}B^{k} \Leftrightarrow (A^{k})^{T}(A^{T})^{-} = (B^{k})^{T}(A^{T})^{-}$$

Hence $A < B \Leftrightarrow AT < B^T$

Proposition 3.2

For $A, B \in \mathcal{F}_n^{(k)}$, $A < B \Leftrightarrow PAP^T < PBP^T$ for some permutation matrix P.

Proof

Since A is k- regular, it can be verified that PAP^T is k- regular and PA- P^T is a k-g inverse of PAP^T for each k-g inverse A- of A.

Now,
$$(PAP^T)$$
 $(PAP^T)^k$ = $PA^-P^TPA^kP^T$
= $PA^-(P^TP) A^kP^T$
= $P(A^-A^k)P^T$
= $P(A^-B^k)P^T$
= $(PA^-P^T) (PBP^T)^k$
= $(PAP^T)^-(PBP^T)^k$
Hence $(PAP^T)^-(PAP^T)^k$ = $(PAP^T)^-(PBP^T)^k$
Similarly $(PAP^T)^k (PAP^T)^-$ = $(PBP^T)^k (PAP^T)^-$

Hence $(PAP^T) < (PBP^T)$

Conversely, if $PAP^T < PBP^T$, then by the preceding part,

$$A = P^{T}(PAP^{T})P < P^{T}(PBP^{T})P = B$$

Thus $A \leq B$.

Proposition 3.3

For A, B $\in \mathcal{B}_n^{(k)}$, if A \leq B with \mathbf{B}^k is idempotent, then A^k is idempotent.

Proof

Since $A \le B$, By Lemma (2.1)

$$A^{2k} = A^k A^k$$

$$= (AYB^k) (B^kXA)$$

$$= AY (B^{2k}) XA = (AYB^k)XA = A^k X A = A^k$$

Remark 3.1

In the above Proposition 3.3, if $A \le B$ with A^2 idempotent then B^2 need not be idempotent. This is illustrated in the following.

Example 3.1

Consider
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Here $A \subseteq B$ for $A = A$, But B is not idempotent.

Proposition 3.4

For $A,B \in \mathcal{F}_n^{(k)}$, if A < B then $B^k = 0$ implies $A^k = 0$.

Proof

Since
$$A \le B \Rightarrow A^k = AYB^k$$
 (By Lemma 2.1)
= 0

References

- [1] K.H. Kim, F.W. Roush, Generalized fuzzy matrices, Fuzzy sets and systems, 4 (1980) 293 315.
- [2] AR. Meenakshi, C.Inbam, The Minus Partial Order in Fuzzy Matrices, Int. Journal of Fuzzy Mathematics, 12(3) (2004) 695 700.
- [3] AR. Meenakshi, P. Jenita, Generalized Regular Fuzzy Matrices, Iranian J. Fuzzy systems (accepted).