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1. Introduction

" The following definitions of iy
Graphs are due to Mordeson [1] :

Definition 1.1

Let G=(V,X) and G'=(V', X ) be graph
subset of V xV such that (p, p) is a parti
fuzzy sub graph of G' . Let f be a One-tof
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etween two fuzzy graphs. This f-morphism is
bn the scaling of weights of the vertices and the
edges. We prove that, the relation “f-morphic”
ion of fuzzy graphs. We prove that under this
ge is an effective edge, the images of fuzzy tree,
zy cycle. We also prove if G, , G, are two fuzzy

G are also f-morphic.
072, 03E72.

omorphismn and weak isomorphism of Fuzzy

s. Let p be a fuzzy subset of V and p be a fuzzy
al fuzzy sub graph of G. Let (1 ', p ') be partial

~one Function of Vonto ¥'. Then,

f is called a [weak] Vertex —isom

®

hism of (p,p) onto (p ",p ) if and only if [ Vv

&V, p (M= (f() and supp (1) = (Hsupp(u)) I () = 1 (SO -

(i)
if V(u, vieX , [p (u, v) < p' (

f is called a [weak] line-isomorphism of (pp) onte ( (i, p") if and only

(@), f (v)) and supp (p") = {( S (), f (")) /

(u, viesup p(p )} 1p (u,v) = p' (/) £ (V).

In case (i), the graphs are exactly the s

e and in case (ii), the class of graphs which
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f-Morphisms in Fuzzy Graphs

are weakly isomorphic to a given fuzzy graph is a heterogeneous collection of fuzzy
graphs. We try to bridge the gap between these two extreme definitions and try to define a
morphism that lies between these two definitions. Our definition of f-morphism partitions
the family of fuzzy graphs into a set of equivalence classes. This f-morphism is defined
on two scale factors, one for the vertices and the other for the edges. When this scale
factors become unity we get our usual isomorphism of fuzzy graphs {3]. In section 2, we
list preliminary definitions. In section 3 we define the f-morphism and give examples. In

section 4, we derive results using the f-morphism. We conclude with section 5.

2. Preliminaries

We list only important definitions. For more details refer [2, 4]

Definition 2.1

A fuzzy Graph G = (V,u ,p) is a nonempty set V together with a pair of functions
p:V—-[0,1}and p: V xV — [0, 1] such that for all x,y € V , we have p(x,y) <
w(x) A p(y). For simplicity, we denote the fuzzy graph by G = (p ,p).Here A denotes the

minimum.

Definition 2.2

We define the sets supp(p) and supp(p) as follows
supp(p) = { xeV | p(x)> 0}

supp(p) = {(x,y) € V x V| p(x,y) > 0}

Definition 2.3

The fuzzy graph H = (v,1) is called a partial fuzzy subgraph of G = (V,n,p) if v < p and
TSP

Definition 2.4

Apath in a fuzzy graph (1 ,p) is a sequence of distinct vertices x,, X,,X,........ ,x_such that

p(x, X} > 0, 1<i<n. The strength of the path is defined as A{p(x,,x)) [ i=1,2.....n}.

Definition 2.5

G = (u,p) is called a tree if ( supp(p),supp(p) ) is a tree. G = (n ,p) 1s called a fuzzy tree
if (n ,p) has a fuzzy spanning subgraph (p,v) which is a tree such that ¥ (u,v) e supp(n)
but not in supp(v) we have '
p(u,v) < v* (u,v).

Le. there exists a path in (p,v) between u and v whose strength is greater than p(u,v).
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Definition 2.6
G = (u ,p) is called a cycle if (supp (p),

cycle ift ( supp(p),supp(p) ) is a cycle ar

supp (p)) is a cycle. G = (p,p) 1s called a fuzzy

d there does not exist a unique (x,y) € supp(p)

such that p(x,y) = A{p(u,v) | (u,v) € supp(p)}-

Definition 2.7

The complement of a fuzzy graph G

where £ (x,y) = p(x) Ap(y) - px,y):

Definition 2.8
An M-strong fuzzy graph is a Fuzzy g

nonzero edge (x,y)
3. f-Morphism

Definition 3.1
Let (G, 1, p,.) and (G, , p,) be twg
bijective function f: V, — V, is called

real numbers &, and &, > 0 such that
@) p, (f@))=k, n, () Vu €V,
(i1) p, (f (@), f )=k, p, (1, V) VY

In such a case f will be called as (£, , £,

Note: If &k, = k, = k then we call f as k-n

fuzzy isomorphism.

Example 3.2
03 0.2
L | |
I | 1
0.6 0.3 0.9
q
G

Here we take k] = 1/2 and }g =1/3

Example 3.3

02 6.2

= (V,u ,p) is defined as G =( V, p, p )

raph in which, p(x,y) = nx) A w(y) for every

fuzzy Graphs, with vertex sets V[ and V, . A

a fuzzy morphism or f-morphism if there extst

,vel, .

}-f-morphism from G, to G,.

orphism. If £, = k, = k=1 then we get our usual -

6.1 0.067

| | |

I I }

3 0.15 0.45
G,

0.1 - 0.1

| | |

[ I I

3 02 0.1
G,
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Here we take k, = k, = 1/2.
Given the value & ;> 0, We find the threshold values for k,, so that the condition for the
fuzzy graph, #: @, fMNS1, (f@NAm(f() Yu,veV, is satisfied. We have two

cases.

Case (i) Assume &, < £,
Then, o, (f (), fF(W)=k, p(w,v) Vu,veV,
ky (1) A (1)
k, (1) A (v)) by assumption
S k(@) Ak (14()

< LA (FO)
There fore, if 0 < k, <k, , then for each &, we have a ( k,, k, }-f-morphism from G, to G

2—""172
Case (ii) Assume £, > £,

Now, p,(f (), f(V)=k, p(u,v) Vuvel,.
Also p, (@), FONS 1, (F@)A i (f)  Yau,veV,
= kypo@w,v) < K (um@)nk ()

ky sy () Ak, (9)
k, <
: A (u,v)

ki 14 (u) A k (V)
Ay puy)

A

IA

a0

=

= k, <

This inequality is true for each edge (u,v). Therefore, k, must be chosen such that

0<k, < Min {M]
PY)] foru e V, and (u,v) is an edge in G,

Example 3.4
0.2 0.3 0.15 0.225
I | ] | | ]
| | | | | 1
0.7 0.6 1 0.35 03 0.5
G] Gz
1 3 '
k =_ and k =
Here * 2 24

1
k==
Assuming 2 the value of k, must satisfy the condition
k. < Min {(.5) (7) (5)(8) (5)(6) (5) (1)}
2 2 3 3
<Min {1.75,1.5,1,1.66}
<1
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Taking &, = 1 we have the second graph

0.2 0.3

| 1 |
| | 1

0.35 03 0.5

Ga

4. Theorems on f-Morphism
Theorem 4.1

The relation “f-morphic” is an equivalerlce relation in the collection of fuzzy graphs.
Proof
Consider the collection of all fuzzy graphs. For two fuzzy graphs G, and G, define the
relation G, = G, if there exists a ( &, , &} )-f-morphism from G, to G,. We prove = is an
equivalence relation.
Clearly G, = G, by taking both £, and £, |to be one.

If Gl = G2 then there exists a ( k ,k, )-morphism from Gl to G2 for some &, and £, This -
induces a (kl’kiJ morphism from G, t9 G, and hence

G,=G,. "

Let G, = G, and G, =G, . then, there exists a (&, , k, )-morphism from G, to G, ( say f)
for some k, and k, and there exists a ( &} , k£, )-morphism from G, to G, (say g)for some
k, and k,

Wehave 1, (f(x))=k 4,(x) Vxel,

£, (f(x) fON=k;, p(x,y) VxyeV and
s (g@)=ky p, () Vuel,

p:(g(), )=k, p,(u,¥) Vu,veV,.
Therefore, L, (g () =k, t, ()

= ps(gW) =k 41, (f (x)
= ki k, oy (x) " Vxel, and,
p(g),g(M)=k, p,(u,y) VuneV,
= 2 (g, g(M) =k, p,(f(x), f(¥)) | whereu= f(x) and v= f(y)
=k, k, p(x,y) Vx,ye

_

There exists a (k, k,, k, k,) f-momorphisg from G, to G,

Hence G, =@,
a6




f-Morphisms in Fuzzy Graphs

Definition 4.2 :
An edge (x,y) in a fuzzy graph is called an effective edge if p(x,y) = pu(x) A u(y)-

Theorem 4.3
Let G, be k- f-morphic to G,. Then, the image of an effective edge is an effective edge.
Proof
Let (x,y) be a strong edge in G, . Then, A1(63)=m () A#(y).
Now, p,(f(x)f(YN=k pi(% )
=% (XA (7))
=k s (x)Ankpy ()
= (OGN A 1{f(M)

= (f(x),f(y)) 1s an effective edge

Corollary 4.4

If G, is k-f-morphic to G, for some k and if G, is M-strong then G, is also M-strong,

Theorem 4.5

Let G, , G, be two fuzzy graphs which are ( &, , k, )-f-morphic. If the image of an effective
edge in G, is in an effective edge in G, then k, =k, . '

Proof

Let (x,y) be an effective edge in G, such that (f(x),f(y)) is also an effective edge in G,.
Then, £,(6)= ) A ()and  p,(f (%), fON) =1 (fC) A 1, (F()

Also, p,(f(x), f(¥)=k, p(x,))
= kLp(xy) = (DA mf()
= k14 (x) AR (D)
= k(4 (x) ()
=k p(xy)
= k=k,.
Theorem 4.6
Let G,, G, be two fuzzy graphs such that G| is f-morphic to G,. Then,
(1) G, is a fuzzy tree = G, 1s a fuzzy tree.
(i1) G, is a fuzzy cycle = G, is a fuzzy cycle.

(i) G, 1s afuzzy regular = G, is a fuzzy regular
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Proof
(i) Under f-morphiosm adjacency of vertices 1s maintained and therefore a tree will remain
a tree. Since the weights of edges are uniformly scaled up or scaled down,the strengths
of paths are also scaled up or scaled dofn by the same factor. Let (Gi» 4, 21) be a fuzzy
tree. Then, (Gi>#4:£1) has a fuzzy spahning subgraph (u,v,) which 1s atree such thar
Y(u, v)e supp (p,) \ supp (v), we have A @) <v,"(@,v). Now,

2" (F@), F () =k, p,” ()
< kv,” (w,v)
=v,"(f@), fO)

Therefore, the image of a fuzzy tree is again a fuzzy tree.

(i) Let ( G, n,, p,) be a fuzzy cycle. Then ( supp (1,) supp (p, ) is acycle and there does
not exist a unique (x,y) € supp (p,) such that i o, )= Ao, (. v)/ (u,v) esup p(p,)}
Correspondingly of the image of( supp (p), supp (p,) is also'a cycle as adjacency is

maintained. Also thére does not exist a ynique edge (f(x),f(y)) such that
(o (f), fO)} = Ao ()1 @) estp p(p)}

= k(A {p@ )/ (uv)esup p(e)))

=k, p(x,)

(3) Let G, be a fuzzy regular.
= > p(u,v) is same for all vertices u

= Y k,p,(u,v) is same for all vertices u

= Z 2. (f @), f(v)) is same for vertices
= G, is fuzzy regular.

Theorem 4.7
If G, G, are two fuzzy graphs which are k-f-morphic then G and G2 are also k-f
morphic.

Proof - B
The complement (G1, £, 2,) is defined as where #,= # and

2 Y) = (DA (M- pi(x ).
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f-Morphisms in Fuzzy Graphs

Now, p, (Ew), fV)= t,(f @) A 11, (F N = 5, (f @), FO)
= kuy () A kﬂ, () ~kp (u,v)
=k(u @) A 1 ()~ o (0, 0))
= k;l(u, V).

Hence G1and G: are also k-f-morphic.

S. Conclusion

We have introduced the concept of f~-Morphism in fuzzy graphs and have derived
results. We, explore these concepts with respect to the matrices associated with the fuzzy
graphs in our next paper. We also study the relation between f- morphism of two fuzzy
graphs and the f-Morphism of their fuzzy line graphs.
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