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Abstract

A Cayley graph is a graph constructed out of a group I' and its generating set
A. In this paper we attempt to find distance—g dominating sets in Cayley graphs
constructed out of Z,. Actually we find the value of distance—g domination num-
ber for Cay(Z,,A) where A is a generating set of Z,. Further we have proved
that Cay(Z,, A) is distance—g excellent. We have also shown that Cay(Z,, 4) is
distance—g 2—excellent if and only if n = t(g|A| + 1) + 1 for some positive integer
t. Also we proved that some Cayley graphs are distance—g 2—restricted.
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1 Introduction

Let T be a finite group with e 4
I' is a subset A such that every
elements of A. Assume that e ¢
graph G = (V| E), where V{G) ;
exists a € A such that y = za} a
of e from A eliminates the possi
the inverse in A for every elemg
regardless of which end vertex is
is the degree of Cay(T', A} [5]. Al

cyclic groups are called circulant

The concept of domination for
authors and one can refer to {2
tained efficient dominating sets f
groups. The efficient domination
obtained by J.Huang and J-M. 3
lant graphs with two chord lengt)

s the identity. A generating set of the group

element of I' is a product of finitely many
A and a € A implies a=! € A. The Cayley

= T and E(G) = {(z,9)e] z,¥ € V(G), there

nd it is denoted by Cay(T, A). The exclusion

bility of loops in the graph. The inclusion of
mt of A means that an edge is in the graph

considered. Note that G is connected and |A|

so the Cayley graphs constructed out of finite

graphs.

rirculant graphs has been studied by various

[9], [7], [10]. I.J. Dejter and O. Serra [2] ob-
br Cayley graphs constructed on permutation
number for vertex transitive graphs have been
Ku [7], where as efficient domination in circu-
hs are studied by N. Obradovié J. Peters and

G. Ru#ié [10]. The existence of independent perfect domination sets in Cayley

graphs was studied by J.Lee [9].
domination number for certain
to a particular generating set of]

Tamizh Chelvam and Rani [11] obtained the
Payley graphs constructed on Z,, with respect

obtained the independent domi

Z,. Further Tamizh Chelvam and Rani {12]
tion number for Cayley graphs on Z,.

Suppose G = (V| E} is a connected graph, the open neighbourhood N (v) of a
vertex v € V(G) consists of the set of vertices adjacent to v. The closed neigh-
bourhood of v is Njv] = N(v)U{}}. Let u, v € V{G). Then d{u, v) is the length
of a shortest uv—path. For any 9 € V(G), N¢,(v) = {uv € V(G) : d(u,v) < g}
and Neglv] = Neg(v) U {v}. For & set S € V, the open neighbourhood N4(S5)
is defined to be UyesN<y(v), and the closed ncighbourhood of S is N¢y[S] =
Neg{(S)US. A set § CV is called a dominating set if every vertex v € V
is either an element of S or adjacent to an element of S1). The domination
number ¥(G) of G is the minimym cardinality among all the dominating sets

in G[1] and the corresponding d
called a distance—g dominating
nation number y<,(G) is the mi
dominating sets in G[1] and the
called a y<,-set.

A dominating set S C V(G) is sa
1 for all v € V(G). A distance

inating set is called a y-set. Aset S C V), is
set if Ne,y[S] = V(G). The distance—g domi-
nimum cardinality among all the distance--g
corresponding distance—¢ dominating set is

d to be efficient dominating set if [N [v]NS] =
—g dominating set S C V(G) is said to be

distance—g efficient dominating Tt if for all v € V{(G), [Ng,[v] N S| = 1. Note

that all the efficient dominating

sets have the same cardinality 4{G) and all
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the distance—g efficient dominating set have the same cardinality v<,(G). A
graph G is said to be distance—g excellent(or distance—yg restricted) if each
vertex u of G is contained(or not contained) in some y¢,-set of G. The graph
G is said to be distance—g k—excellent(or distance—g k—restricted), if every
subset § € V with |S| = k is contained(or not contained) in some y<g-set of G.
Throughout this paper, n is a fixed positive integer, Z, = {0,1,2,...,n — 1}
and G = Cay(Z,, A), where A is a generating set. Unless otherwise specified A
stands for the set {1,n—1,2,n—2,... ,k,n—k} where 1 <k < “T"l Hereafter
+ stands for modulo n addition in Z,.

2 Distance—g Domination in G = Cay(Z,, A)

In this section, the value of distance—g domination number for certain Cayley
graphs is obtained. Also the existence of distance—g 2-excellent Cayley graphs
has been discussed.

Theorem 2.1 Letn, k be integers such that 1 < k < *2L and G = Cay(Z,, A)

where A ={1,n—1,2,n—2,...,k,n—k}. Then v<,(G) = [W}.

Proof: Let £ = [ ] = [52 ] Then n = (€ — 1)(1 + 2gk) + A for some
h with 1 < h < 2gk - 1. Note that, for any v € V(G), N[v] = {v,v+ 1,v +
2,...,v+k,vt+{n—-1),v+(n—-2),...,v+(n—k)}. Hence by using the property
of vertex transitivity one can write Neyfv] = {v, v+ 1L,v+2,...,v + gk, v +
(n—1),v+(n—2),...,v+ (n—gk)} Hence 1¢,(G) > (5 |-

Consider the set D = {0, (2gk +1),2(2gk+1),3(2gk +1),..., (£—1)(29k+1)}.
Claim. D is a distance--g dominating set of G.

It is always true that Neg[D] = U} Ne,[(2gk + 1)i] € V(G) and so it is
enough to prove that V{(G) C Ny [D)]. Let ¢ € V{G). By division algorithm,
one can write ¢ = (2gk + 1)i + j for some ¢ and j satisfying 0 <i < £—1 and
0 < j < 2gk. We have the following cases:

Case(i). Suppose 0 < j < gk and 0 < i < £— 1, then it is easy to see that
cc ng[(2gk + 1)2} Q NSQ [D]

Case(ii). Suppose gk +1 < j < 29k and 0 < ¢ < £ — 2. In this case ¢ =
(29k+ 1)i+3j = (2gk +1){i + 1) + (j — (1 + 2gk)). Hence c+ ({1 + 2gk) — j) =
(2gk +1)(i + 1) where 1 <41+ 1 < £—1. Since gk + 1 < j < 2gk, we have
I < (14 2gk) — j <gk. Hence ¢ € N, [(2gk + 1)(i + 1)] © N, [D].
Case(iii). Assume that gk + 1 < j§ < 2gk and 4 = £ — 1. In this case 0 =
¢k +1){¢ - 1)+ 5+ (h~j)=c+(h—j). By the assumption on j and ,
we have gk +1 < j < h < 2¢k. Hence 0 < h— j < gk — 1. This implies that
¢ € Nggl0] € Ney[D). Now we have V(G) € NeglD] and so v<,(G) < |D| =
¢= sl
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Remark 2.2 v<,(Cay(Z,, A)) depends upon A, the generating set of Z. For
example, let ¢ = 1 and consided Cay(Zyo, A) with |A] = 4. It is obvious
that {1,2,8,9} and {1,4,6,9} afe generating sets. When A = {1,2,8,9},
v<o{Cay(Zi, A)) = 2 and when A= {1,4,6,9}, y<,(Cay(Z1o, A)) = 3.

In the following Lemma, we identify another vy<,-set for Cay(Z,, A) apart from
the one identified in the proof of Theorem 2.1.

Lemma 2.3 Let n,k be integers

such that 1 < k < 2= and ¢ =

2 [292+1] :

Then for fized k, if n = (2gk + )(£ — 1) + h,1 < h < 2gk then D = {0, A,

h+ (2gk +1),... b+ (£~ 2)(2gk

Proof: Note that any v € V(G)
for some ¢ and r with 0 <4 < ¢ —
The following cases arise:

+ 1)} is a y<4-set for G.

could be written as v = h+ (2gk + 1)t + 7
1and 0 <r < 2¢k.

Case (i). Suppose v =h+ (2gk 4 1)i+7, 0 <i<{—-2and 0 <r < gk then

v € Neylh+(2gk+ 1)) © Ngg[ D).
Neg0] € Ney[D].

Further wheni =/¢—1and 0 <r < gk,v €

Case (ii). Supposc v = A+ (2gk# 1)t +r,0 <: < f—1land gk +1 <r < 2¢k.
Subcase (i}. When 0 < ¢ < /-3, we have v = A+(2gk+1)(i+1)+(r—(2gk-+1))
andso v+ ((2gk+1)—r) = h+ (3gk+ 1)(i+1) where 1 < (2gk+1)—r < gk
and 1 <7-+1<¢—2 Hence v € Ney[h-+ {29k +1)(i +1)] C Ngy[ D).

Subcase (ii). When i = £—2, we have v = h+(2gk+1)({—-1)+(r—(29k+1)) =
04 (r—(2¢gk-+1)) and so v +((2gh +1) —r) = 0 where 1 < (2gk+1) —r < gk.

Hence v € Ne [0] € Ney[D].
Subcase (iii). Suppose 7 = £ — 1

we have v =h+ (2gk + D) - 1)+ r =,

In this case v € Neg[{h, A+ (29k 4+ 1)}] € Ny[D]. In all the cases v € Ney[D]
and hence by Theorem 2.1, D is 8 y<,-set.

Lemma 2.4 Assume that A; = {1,n — 1}. Suppose D is a y<4-set for Gy =
Cay(Zn, A1), then D is a distande—yg dominating set for Gy = Cay(Z,, Aa)

with Ay = {I,n~1,2,n-2,...}

and |Az| > 2.

Proof: Since A; C A2,G1 = Cdy(Z,, A1) is a spanning subgraph of Gy =

Cay(Zn, As), the result follows.

Remark 2.5 If D is a distance-g dominating set, then by the property of
vertex transitivity in Cayley graphs, D -t v is also a distance—g dominating set
for all v € V(G). Thus Cayley graph G = Cay(Z,, A) is distance— g excellent.

Lemma 2.6 Let n, k be infegers
where A = {1,n—1,2,n - 2,...

buch that 1 < k < 224 and G = Cay(Z,, A)
k,n—k}. If n = 29k + D)t + 1 for some

positive integer t, then G is distance—g 2— excellent.
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Proof: Let ¢ = [Eﬁ;ﬂ. By Theorem 2.1, 7¢o(G) = { = t+ 1 and D =
{0, (2gk +1),2(2gk+1),3(20k +1),...,(£—1){2gk + 1)} is y<,— set. Since the
Cayley graphs have the property of vertex transitivity, it is enough to prove
that for any given d € V(G), d # 0, there exists a yc,—set D; such that
{0,d} € D;.

Let d(# 0) € V(G). If d € D then nothing to prove. Otherwise d lies between
1(2gk+1) and (i+1)(2gk+1) for some 0 <7 < £—2. Since (£—1)(1+2gk)+1 =
0 (mod n), there exists no element between (¢ — 1)(1 + 2gk) and 0. Having i
fixed, consider the set Dy = {0, 1+2¢k, 2(1 4+ 2gk), ..., i(1+2gk),d, i+ 1)(1+
20k)+1,...,(£—2)(1+2gk) +1} Note that |D;| = £ Let v € V(G). If v € Dy,
then nothing to prove. Otherwise we have the following cases:

Case (i). fv € {1,2,...,4(1 + 2gk) — 1}. Then v = r(1 + 2gk) + j for some
rand jwithO0<r<i—-1land1<j <29k

Subcase (i). f 0 < r <i—1and1 < j < gk then v € N, [r(1 + 29k)] C
Neg[D1].

Subcase (ii). Suppose 0 < r < i— 1 and gk +1 < j < 2gk. In this case
v = (2gk+1)r+3j = (20k+1){r+1)+(j — (1 +2¢gk)). Hence v+ ((14-2gk)—5) =
(29k + 1)(r + 1) where 1 < r +1 < 4. Since gk + 1 < j < 2¢k, we have
1< (1+29k) —J < gk. Hence v € Ney[(2gk + 1)(r + 1)] € Ne [Dy].

Case (ii). If v € {i(1 +2gk) +1,. ... (i + 1)(1 + 2gk)}.

Subcase (i). Suppose v = (1 + 2gk) + 5 for some 7 with 1 < j < gk. Then
Ve Ngg[’ﬂ(l + 2gk)] - NSH[Dl]'

Subcase (ii). Suppose v = (1 + 2¢k) + gk + 1. By the definition of d, d =
1(2gk + 1) + z for some x with 1 < z < 2gk.

If1<z<gkthenl < (1+gk)~-z<gkandd+ ((1+gk)—z)=v. Hence
v € Nggld] € Ney[Dy].

Otherwise gk +2 < 2 < 2gk and so 1 <"z — (1 + gk) < gk — 1. In this case
v+ {x — (1 + gk)) = d and so v € N¢,[d] C N, [D1].

Subcase (iii). Suppose v = ¢(1+2gk)+j for some j with gk +2 < § < 2gk+1
In this case v = (2gk +1)i +j = (29k + 1){(i + 1) + 1 + (j — (2gk + 2)). Hence
v+ ((2+429k) - j) = (2gk + 1)(+ 1) + 1. Since gk +2 < j < 2gk + 1, we have
1< (2+29k) — j < gk Hence v € Ngy[(29k +1)(s + 1) + 1] € Ney[Dy).
Case (iii). If v € {(+1)(14+2gk)+2, (i +1){(1+29k) +3, ..., ({—1)(1+2gk) (=
n—1)} Thenv=r(1+2gk)+1+j forsomer and jwithi+1<r < €—2
and 1 < 5 < 2gk.

Subcase (i). Supposc i+ 1<r <f—2and 1< j < gk. Thenv € Ng,yjr(l +
29k) + 1] C Ney (D]

Subcase (ii). Suppose i + 1 < 7 < ¢ 3 and gk +1 < j < 2gk. In this
case v = (2gk +1)r + 147 = 29k +1)(r + 1) + 1 + (5 — (1 + 29k)). Hence
v+ ({1 +20k) —5) = 29k +1)(r +1)+1 where i +2 < 7 +1 < € - 2.
Since gk +1 < j < 2¢gk, we have 1 < (1 + 2gk) — j < gk. Hence v €
Neo[(2gk + 1)(r + 1) + 1] © Ney[Dy].

Subcase (iii). Suppose r = £ — 2 and gk + 1 < j < 2gk. In this case v =
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(2gk + 1) - 2) + 1+ (24
v+ (1 +2gk) — ) = {29k + 1)

have 1 < (1 + 2¢gk) — j < gk. Heg

i+ 1)(F — 1)+ 1+ (7 — (1 + 2gk)). Hence
({ — 1)+ 1 = 0. Since gk + 1 < 5 < 2gk, we
nce v € Ne,g[0] € Ney[Dy].

Hence D; is a v<,—set which contains the set {0, d} and hence G is distance—g

2—excellent.

Theorem 2.7 Letn, k be intege
where A = {l,n - 1,2,n—2,.|
integer t > 0 and 1 < j < 2gk
only if j = 1.

Proof: Suppose j = 1. Then n
is distance—g 2— excellent.

Conversely let G be distance—g
1) + 7, for some j,1 < § < 2¢
gk + 2. Since G is distance—g 2-
{gk—+1, gk+2} C D. Then by Th
proof of Theorem 2.1, N¢,lgk + |
arid hence N¢,[gk + 2] containg
Neg[{gh + 1, gk + 2}] contains ¢
2gk+1, for allv € V(G), N, [ D]
vertices of G, whercas (£ — 2)(2
t(2gk + 1) + 1 < n, which is a cq
set. Hence 7 = 1.

Lemma 2.8 Let n, k be integer
where A = {I,n - 1.2,n - 2, ..
positive integer t, then G 1s dist

Proof: By Theorem 2.1, v¢,(G)
(£ —1)(1 + 29k)} is a y<4—set.
to find a y<,—sct D of G such {
Dy such that 0,d ¢ Dy for any
by Lemma 2.6, there exists a <
2gk),d, i+ D) (1 +2g9k)+1,...(

rs such that 1 < k < 252 and G = Cay(Z,. A)
Skyn— kYo If o= (2gk + 1)t 4+ for some
+ 1. then G is distance—g 2-excellent if and

= t(2gk + 1) + 1 and hence by Lemma 2.6, G

P-cxcellent. Suppose j # 1. Then n = ¢(2gk +
b+ 1. Consider the two vertices gk + 1 and
excellent, there exists a y<,—set D such that
eorem 2.1, [D| = £ = [; ] = {+1. Asin the
| contains all elements between 1 and 2gk +1
elements between 2 and 2gk + 2. Therefore
xactly 29k + 2 vertices of G. Since Ng,v] =
can contains at most ({—2)(2gk+1)+2gk+2
gk + 1)+ 29k +2 =({ - 1)(29k+1) +1 =
pntradiction to D is a distance—¢g dominating

n—1

5 such that 1 < k < 222 and G = Cay(Z,, A)
Lkono— kY Ifno= (2gk + 1)t + 1 for some

pnce—g 2-—restricted.

= [gr | and D = {0, 1+29k, 2(1+2¢k), . . .,
Let .y € V(G) and assume z < y. In order
hat =,y € D. it is cnough to find a vy, —sct
0 # d e V(G). Let d(# 0) € V(G). Then
o—set Dy = {0.1 +2gk, 2(1 + 2¢k), ..., i(1 +
f — 2)(1 + 2gk) + 1} such that 0,d € Dy. Also

there are at least two elements in between 7(1 + 2gk) and (¢ + 1)(1 + 2gk) and

d is the only clement of Dy lies

Note that n — 1,1 ¢ D) and so (|

d-1¢€ Dy, thend—-1 =1
d ¢ D+ (n—1). Hence by Rer
Dy +(n—1). Otherwise d — 1 ¢
that 0,d ¢ Dy + 1.

in between i(1 + 2¢k) and (1 + 1)(1 + 2gk).
¢ Dy +1and 0¢ Dy + (n—1).

1 + 2gk). Fromn this d + 1 ¢ D and hence
nark 2.5, Dy +n —1 is a y¢,—set and 0,d ¢
Dy and in this case D) + 1 is a y<,—set such

84




Distance-g domination in Cayley graphs

In the following theorem, we obtain a necessary and sufficient condition for
the existence of distance—g efficient domination sets for Cay(Z,, A).

Theorem 2.9 Letn, k be integers such that 1 < k < ™1 and G = Cay(Z,, A)
where A = {1,n—1,2,n—2,... k,n —k}. Let £ = [igf"ﬁ] Then G has a
distance—g efficient dominating set if and only if n = £(2gk + 1). In this case
the distance—g efficient domination number is ﬁ.

Proof: By Theorem 2.1, we have v, (G) = [5f7]. Assume that [} is a
distance—g efficient dominating set of G. Then | D| = £ and [N (v)NNgy(u)| =
B for any two distinct vertices u,v € D. Also |Ngy[v]| = 1 + 2¢k for all
v € V(G). Hence n = £(1 + 2gk).

Conversely suppose n = £(2gk+1). By Theorem 2.1, D = {0, (2gk+1), 2(2gk+
1),3(2gk-+1),..., (£ 1)(2gk+1)} is a distance—g dominating set and | D| = £,
Since |Neg(v)] = 2gk+ 1 for all v € V(G), n = £(2gk + 1) and |D| = ¢, one can
conclude that 7 is a distance—yg eflicient dominating set in G.
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