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1. Introduction

In recent years, Mathematical models have gained importance in describing,

analyzing, Optimizing and controlling all

kinds of systems. In biomedical research, studies

in which repeated measurements are taken on a series of individuals or experimental

animals play an important role. Models

data enjoy an increasing popularity. In thg

including random effects to model this kind of

»se models it is assumed that all responses follow

a similar functional form, but with paramieters that vary among individuals. The increasing

popularity of random effects models lies
where the total variation is specially sp
This will often lead to more precise est
pharmacokinetic/pharmacodynamic (PK
effects in the models, thereby improving

Continuous biological processe
differential equations (ODE), which unf
often present in biological systems, reprs
predict or understand, or that we choose
extension is given by systems of stocha
noise is modeled by including a diffug

in the flexible modeling of correlation structures

lit in withingroup and between-group variation.
imation of population parameters. Especially in
[/PD) modeling most studies include random

population parameter estimation.

5 are often described by systems of ordinary
ortunately cannot account for noisy components
psenting the parts of the dynamics that we cannot
not to include in the explicit modeling. A natural
stic differential equations (SDE), where system
ion term of some suitable form in the driving
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equations. In PK/PD meodeling the focus is most often on the infinitesimal changes of
substances, which naturally leads to a ODE system. The inter-individual variability is
modeled with the random effect, and the intra-individual variability with an additive noise
term (possibly after some convenient transformation). Noise in the differential equations
descrbing the behavior of the system requires an extension of the model class to SDE

models.

The theory for mixed-effects models is well developed for deterministic models
(without system error), both linear and non-linear [2,3,14,25], and standard software
for model fitting is available, see e.g. [18] and references therein. Early and important
references in the pharmacokinetic field are [21,22].Estimating parameters in SDE models

1s not straightforward, except for simple cases.

A natural approach would be likelihood inference, but the transition den- sities are
rarely known, and thus it is usually not possible to write the likelihood function explicitly.
A variety of methods for statistical inference in discretely observed diffusion processes has
been developed during the past decades, see e.g. [1,4,5,6,7,9,10, 13,16,17,19,20,23,24].
However, to our knowledge there is practically no theory at present for SDE models
with random effects. In [15] it is suggested to apply the Kalman filter to approximate the
likelihood function for SDE model with random effects, with a non-linear drift term and
a constant diffusion term. As SDE models will be more commonly applied to biomedical
data, there will be an increasing need for developing a theory including mixed effects, and
for results on the estimation of model parameters. In [8] methods for PK/PD population
modeling are reviewed, but the authors regret that system noise is not considered since it
is difficult to estimate, and that there exits no software at present in the pharmacokinetic
field.

In this paper a class of statistical models is proposed where random effects
are incorporated into a diffusion model, and an expression for the likelihood function
is derived. In general, though, it is not possible to find an explicit expression for the
likelthood function, but in a very simple example it is derived and explicit maximum

likelibood estimators are found.

2. The Model

Consider the one-dimensional SDE model for some continuous process evolving

in M different subjects randomly chosen from a population :

dx' = g(X\,0,b") dt+ o (X' 0,pNdW; i =1,..M

b' ~ N (0,5)

X' =Xl (2.1)
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Where 0 15 a p-dimensional fixed effect
and b' is a g-dimensional random effects
follow a normal distribution in the popu
known up to the parameter vectony. The

b¥ are assumed mutually independent fo

The drift and the diffusion coeffi

k parameter (the same for the entire population)
parameter (subject specifc), which is assumed to
ation, with covariance matrix X that is assumed
W/ are standard Brownian motions. The W and
Fall 1 <1,j <M, and independent of X © .

cient functions g () and o (.) are assumed known

up to the parameters, and are assumed sufficiently regular to ensure a unique solution. Let

E < R denote the state space of X' . Ass
X, t > s, has a strictly positive density w.
by

y—pyxt—s\b,0)>0yeE.

Assume the M subjects each are observg
Let y' be the (n. + 1) -dimensional respoj
Y=, e Y ¥ () = v,/ =y, and let y

M N
N=X (n+1). Wnte t.-t
I=1

observation j - 1 and j for subject i.

Al
B j

Parameters of the model are 6 andy whi
3. Maximum Likelihood Estimatjon in

To obtain the marginal density, 1
given the non-observable random effect
random effects, using the fact that W, at
function

M
I1 PG'16,w)

i=1

L(6,yly)=

where L(.) is the likelihood and p(.) are

n;
po’ | 6.0) = TI p&.v1,4514,0)

=1

since X' given b’ is Markov, where the

hypothesis,

ime that the distribution of X given b and X ! =

r.t. the Lebesgue measure on E, which we denote

2.2)

d at the (n, + 1) discrete time points (t ', t},..t ).
1se vector for the i'th subject :

be the N-dimensional total response vector,

for the distance between

th we wish to estimate.
SDE Mixed Effects Models

we integrate the conditional density of the data
s b' with respect to the marginal density of the
nd b’ are independent. This yields the likelihood

M
IT I o [ v.8)p @' |y)db

i=1

(3.1)

lensities. Now

(3.2)

fransition densities are as in equn.(2.2), and, by
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e (- (BN Tw 1 /2}

p(b'ly) =

VW @ n) (3.3)

where T denotes transposition. Substituting (3.2) and (3.3) into (3.1) we obtain
ap (b)) B/ 2)

M I . . , \ .
L0, = Y1, A b, 8 - db'
@,vy]y) H J‘ ]—[ p(ylj YlJ 1. il ) J |W

=1 =1

' (3.4)
Solving the integral yields the marginal likelihood of the parameters, independent of the
random effects b'. In general it will not be possible to find an explicit solution, but n
simple cases we can find an explicit expression for the likelihood, and even find explicit

estimating equations for the maximum likelihood estimators.

3.1. Arandom effect in Brownian motion with drift

In the simplest phannacold-netic situation, the metabolism of a compound s modeled
as a mono-exponential decay in the following way (first-order kinetics) :
dC@t) = -kCH); C(0)=D/V
dt ' ' (3.5)
with solution C(t) = C(0) e

where C(t) is the concentration of the compound in plasma at time t after a bolus
injection, k is the (positive) rate elimination constant, D is the injected dose at time t =0,
and V the apparent volume of distribution of the compound. Now assume that we want
to model the erratic behavior of the metabolic processes responsible for the removal of
the compound from plasma, by allowing k to vary randomly as k+»(t), where »(t) is a
white noise process. Then &(f) dt = o dW(t) where W(t) is Brownian motion and ¢ a
scaling parameter. Incorporating this into (3.5), writing X, = C(f) and p = k, we obtain
the equation
dX = BXdt + oX dW,

which is the equation of geometric Brownian motion. The state space E is given
by the posttive real line. By applying Ito's formula to the transformation: Y, = logX,, we
obtain a Brownian motion with linear drift :
dYy = (B - 16°) dt + o dW,.

2
With Solution
Yt=Y, +(B -1t +o dW,
2
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Assume an experiment is conducted on different subjects where the concentration

of a compound m plasma is measured

We are interested in estimating the paraj

it different time points after a bolus injection.

meters in the population, but expect individual

differences in the metabolic processes, and would therefore consider a random effect in

B, which leads to the model :

Yi=Yo+(B+p'- 1 0%)t+oW,
2 ,

Bl ~N (0, 5%)

4, anciusion

In the present paper we propos
estimation of parameters in SDE models.
needed. It is relevant because as the soph

models of biological processes increases

(3.6)

e to extend random effects techniques to the
We believe this extension to be both relevant and
istication of builders and users of mathematical
there will be a progressive growth of the use of

stochastic differential equations to represent noisy processes. When only few observations

can be collected from any given human or animal experimental subject, as is usually the

case, recourse to random or mixed effects models will be necessary.

Statistical inference for this clasg

work, a very simple model gave rise to

of models is not straightforward. In the present

explicit expressions for the likelthood function

and for the maximum likelihood estimators. This mode! is in its deterministic version

frequently employed in pharmacokinetics (e.g. to represent drug elimination from plasma

or initial tumor cell population growth).

Unfortunately, in general it will
the likelihood function given by equn (3.

ot be possible to find an explicit expression for

) since the transition densities are rarely known.

One possibility could be to approximate the likelihood function numerically, and then

optimize the approximated likelihood fupction directly.
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