Fuzzy Strong n-Inner Product Space

S.Vijayabalaji

Department of Mathematics, Anna University of Technology, Tiruchirappalli Panruti Campus, Panruti - 607 106, India.

Email: balaji nandini@rediffmail.com

Abstract

The purpose of this paper is to introduce the notion of fuzzy strong n-inner product space as a generalization of fuzzy n-inner product space. Ascending family of strong α -n-inner products corresponding to fuzzy strong n-inner product is introduced and we provide some results on it.

Key words and phrases: n-inner product, fuzzy n-inner product, fuzzy strong n-inner product, α -n inner product.

AMS Mathematics Subject Classification: 46\$40, 03E72.

1. Introduction

Significant contribution in the theory of 2-inner product space and n-inner product space has been made by eminent researchers in [3, 4, 5, 6, and 7]. Recently, Vijayabalaji and Thillaigovindan have introduced the notion of fuzzy n-inner product space in [9]. In this paper as a natural generalization of fuzzy n-inner product space we introduce the notion of fuzzy strong n- inner product space. Vijayabalaji and Thillaigovindan raised a problem of constructing α -n-inner product space Studied in [9] and answer to this problem is provided in this paper by constructing α - strong n-inner product space.

Analogue of α -n-inner product space in [9] we introduce the notion of α -strong n-inner product space. We then interrelate α -strong n- inner product space and α -n-normed linear space.

2. Preliminaries

In this section we recall some concepts which will be needed in the sequel.

Definition 2.1 [2]

¢

Let n be a natural number greater than 1 and X be a real linear space of dimension greater than or equal to n and let $(\bullet, \bullet | \bullet, ..., \bullet)$ be a real valued function on $\underbrace{X \times X ... \times X}_{(n+1) \text{times}} = X^{n+1}$ satisfying the following conditions:

- (1) (i) $(x, x | x_2, ..., x_n) \ge 0$,
 - (ii) $(x, x | x_2,...,x_n) = 0$ if any only if $x, x_2,...,x_n$ are linearly dependent,
- (2) $(x,y|x,...,x_n) = (y,x|x,...,x_n),$
- (3) $(x, y | x_2, ..., x_n)$ is invariant under any permutation of $x, x_2, ..., x_n$,
- (4) $(x, x \mid x_2,...,x_n) = (x_2, x_2 \mid x_3,...,x_n),$
- (5) $(ax, x \mid x_2,...,x_n) = a(x, x \mid x_2,...,x_n)$,
- (6) $(x+x', y \mid x_2,...,x_n) = (x, y \mid x_2,...,x_n) + (x', y \mid x_2,...,x_n)$

Then $(\bullet, \bullet | \bullet, ..., \bullet)$ is called an n-inner product on X and $(X, (\bullet, \bullet | \bullet, ..., \bullet))$ is called an n-inner product space.

Definition 2.2 [8]

Let n be a natural number greater than 1 and X be a real linear space of dimension greater than or equal to n. A real valued function $\|\bullet,\bullet,...,\bullet\|$ on $\underbrace{X\times X...\times X}_{ntimes}=X^n$ satisfying the following conditions

- (1) $||x_1, x_2, ..., x_n|| = 0$ if any only if $x_1, x_2, ..., x_n$ are linearly dependent,
- (2) $||x_1, x_2, ..., x_n||$ is invariant under any permutation,
- (3) $||x_1, x_2, ..., ax_n|| = |a| ||x_1, x_2, ..., x_n||$, for any $\alpha \in R$ (real),
- $(4) \parallel x_1, x_2, ..., x_{n-1}, y+z \leq \parallel x_1, x_2, ..., x_{n-1}, y \parallel + \parallel x_1, x_2, ..., x_{n-1}, z \parallel,$

is called an n-norm on X and the pair $(X, \|\bullet, \bullet, ..., \bullet\|)$ is called an n-normed linear Space.

Remark 2.3 [8]

In the above definition if we replace (3) by,

(3) $||x_1, x_2, ..., ax_n|| = |a|^p ||x_1, x_2, ..., x_n||$, for any $\alpha \in R$ (real) and $0 \le p \le 1$,

then $(X, \| \bullet, \bullet, ..., \bullet \|)$ is called as quasi n-normed linear space.

Remark 2.4 [3]

If an n-inner product space $(X, (\bullet, \bullet | \bullet, ..., \bullet))$ is given then $||x_1, x_2, ..., x_n|| = \sqrt{(x_1, x_1 | x_2, ..., x_n)}$ defines an n-norm on X. Further the following extension of Cauchy-Buniakowski inequality is also true $|(x, y | x_2, ..., x_n)| \le \sqrt{(x, x | x_2, ..., x_n)} \sqrt{(y, y | x_2, ..., x_n)}$.

Definition 2.5 [8]

Let X be a linear space over a real field \mathbf{F} . A fuzzy subset \mathbf{N} of $X^n \times R$ (R -set of real numbers) is called a fuzzy n-norm on X if and only if:

- (N1) For all $t \in R$ with $t \le 0$, $N(x_1, x_2, ..., x_n, t) = 0$.
- (N2) For all $t \in R$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent.
- (N3) $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, x_2, ..., x_n$.
- (N4) For all $t \in R$ with t > 0, $N(x_1, x_2, ..., cx_n, t) = N(x_1, x_2, ..., x_n, \frac{t}{|c|})$, if $c \neq 0, c \in F$ (field).
- (N5) For all $s,t \in R$, $N(x_1,x_2,...,x_n+x_n',s+t) \ge \min\{N(x_1,x_2,...,x_n,s),N(x_1,x_2,...,x_n',t)\}$.
- (N6) $N(x_1, x_2, ..., x_n, t)$ is a non-decreasing function of $t \in R$ and $t \to \infty$ $N(x_1, x_2, ..., x_n, t) = 1$.

Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 2.6 [8]

In the above definition if we replace (N4) by,

(N4) For all $t \in R$ with t > 0, $N(x_1, x_2, ..., cx_n, t) = N(x_1, x_2, ..., x_n, \frac{t}{|c|^p})$, if $c \neq 0, c \in F$ (field), $0 \leq p \leq 1$. Then (X, N) is called a fuzzy quasi n-normed linear space or in short f-q-n-NLS.

Theorem 2.7 [8]

Let (X, N) be a f-n-NLS. Assume the condition that

 (N^*) $N(x_1, x_2, ..., x_n, t) > 0$ for all t > 0 implies $x_1, x_2, ..., x_n$ are linearly dependent. Define

 $\|x_1, x_2, ..., x_n\|_{\alpha} = \inf \{t: N(x_1, x_2, ..., x_n, t) \ge \alpha \}, \alpha \in (0,1).$ Then $\{\|\bullet, \bullet, ..., \bullet\|_{\alpha} : \alpha \in (0,1) \}$ is an ascending family of n-norms on X. We call these n-norms as α -n-norms on X corresponding to the fuzzy n-norm on X.

Definition 2.8 [9]

Let X be a linear space over a real field F. A fuzzy subset

 $J: X^{n+1} \times R \rightarrow [0,1]$ (R-set of real numbers) is called a fuzzy n-m on X if and only if:

- (1) For all $t \in R$ with $t \le 0$, $J(x, x | x_2, ..., x_n, t) = 0$.
- (2) For all $t \in R$ with t > 0, $J(x, x \mid x_2, ..., x_n, t) = 1$ if and only if $x, x_2, ..., x_n$ are linearly dependent.
- (3) For all t > 0, $J(x, y | x_2, ..., x_n, t) = J(y, x | x_2, ..., x_n, t)$.
- (4) $J(x,y|x_2,...,x_n,t)$ is invariant under any permutation of $x_2,...,x_n$.
- (5) For all t > 0, $J(x, x | x_2, ..., x_n, t) = J(x_2, x_2 | x, ..., x_n, t)$
- (6) For all t > 0, $J(ax,bx \mid x_2,...,x_n,t) = J(x,x \mid x_2,...,x_n,\frac{t}{\mid ab \mid}), a,b \in R$ (real).
- (7) For all $s, t \in \mathbb{R}$, $J(x+x',y|x_2,...,x_n,t+s) \ge \min \{J(x,y|x_2,...,x_n,t), J(x',y|x_2,...,x_n,s)\}$
- (8) For all $s, t \in R$ with s > 0, t > 0, $J(x, y \mid x_2, ..., x_n, \sqrt{ts}) \ge \min \{J(x, x \mid x_2, ..., x_n, t), J(y, y \mid x_2, ..., x_n, s)\}$,
- (9) $J(x,y|x_2,...,x_n,t)$ is a non-decreasing function of $t \in R$ and $\lim_{t \to \infty} J(x,y|x_2,...,x_n,t) = 1.$

Then (X, J) is called a fuzzy n-inner product space or in short f-n-IPS.

3. Fuzzy strong n-inner product space

By generalizing Definition 2.8 we obtain the new notion of fuzzy strong n-inner product space as follows.

Definition 3.1

Let X be a linear space over a real field F. A fuzzy subset $J: X^{n+1} \times R \to [0,1]$ (R -set of real numbers) is called a fuzzy strong n-inner product on X if and only if:

- (1) For all $t \in R$ with $t \le 0$, $J(x, x | x_2, ..., x_n, t) = 0$.
- (2) For all $t \in R$ with t > 0, $J(x, x \mid x_2, ..., x_n, t) = 1$ if and only if $x, x_2, ..., x_n$ are linearly dependent.
- (3) For all t > 0, $J(x, y | x_2, ..., x_n, t) = J(y, x | x_2, ..., x_n, t)$.

(4) $J(x,y|x,...,x_n,t)$ is invariant under any permutation of $x_2,...,x_n$.

(5) For all
$$t > 0$$
, $J(x, x | x_2, ..., x_n, t) = J(x_2, x_2 | x, ..., x_n, t)$

(6) For all
$$t > 0$$
, $J(ax,bx \mid x_2,...,x_n,t) = J(x,x \mid x_2,...,x_n,\frac{t}{\mid ab \mid}), a,b \in R$ (real).

(7) For all
$$s, t \in R$$
, $J(x+x', y | x_2,...,x_n, t+s) = \min \{ J(x, y | x_2,...,x_n, t), J(x', y | x_2,...,x_n, s) \}$.

(8) For all
$$s, t \in R$$
 with $s > 0, t > 0$, $J(x, y | x_1, ..., x_n, \sqrt{ts}) = \min \{ J(x, x | x_2, ..., x_n, t), J(y, y | x_2, ..., x_n, s) \}$,

(9) $J(x,y|x_2,...,x_n,t)$ is a non-decreasing function of $t \in R$ and $t \to \infty$ $J(x,y|x_2,...,x_n,t) = 1$.

Then (X, J) is called a fuzzy strong n-inner product space or in short f-ST-n-IPS.

Example 3.2

Let $(X, (\bullet, \bullet | \bullet, ..., \bullet))$ be an n-inner product space. Define

$$J(x,y \mid x_{2},...,x_{n},t) = \begin{cases} \frac{t}{t + |(x,y \mid x_{2},...,x_{n})|}, \\ o, otherwise. \end{cases} \text{ when } t > 0, t \in R, (x,y \mid x_{2},...,x_{n}) \in X^{n+1}$$

Then (X, J) is a f-ST-n-IPS.

Proof

As given in [9].

4. Strong α - n-inner product space

Analogue of ascending family of quasi -n-norms corresponding to the fuzzy quasi n-norm that was introduced in [9], we now introduce the new notion of strong -n-inner product corresponding to fuzzy strong n-inner product in the following theorem.

Theorem 4.1

Let (X, J) be a f-ST-n-IPS. Assume the condition that

(10) $J(x, y | x_2,...,x_n,t) > 0$ implies $x, x_2,...,x_n$ are linearly dependent.

Define
$$(x, x | x_2, ..., x_n)_{\alpha} = \inf \{ t : J(x, x | x_2, ..., x_n, t) \ge \alpha \} \alpha \in (0,1).$$

Then $\{(\bullet, \bullet \mid \bullet, ..., \bullet)_{\alpha} : \alpha \in (0, 1)\}$, is an ascending family of strong n-inner products on X.

We call these n-inner products as strong α -n-inner product on X corresponding to the fuzzy strong n-inner product on X.

Proof

(1) (i) Clearly
$$(x, x | x_2, ..., x_n)_{\alpha} \ge 0$$
,
(ii) $(x, x | x_2, ..., x_n)_{\alpha} = 0$
 $\Rightarrow \inf \{ t : J(x, x | x_2, ..., x_n, t) \ge \alpha \} = 0$
 $\Rightarrow \text{For all } t \in R, t > 0, \ J(x, x | x_2, ..., x_n, t) \ge \alpha > 0, \ \alpha \in (0,1).$
 $\Rightarrow \text{By } (10) \ x, x_2, ..., x_n \text{ are linearly dependent.}$

Conversely assume that $x, x_2, ..., x_n$ are linearly dependent.

$$\Rightarrow \text{By } (2) \quad J(x, x \mid x_2, ..., x_n, t) = 1 \text{ for all } t > 0$$

$$\Rightarrow \text{For all } \alpha \in (0,1) \text{ inf } \{ t : J(x, x \mid x_2, ..., x_n, t) \ge \alpha \} = 0$$

$$\Rightarrow (x, x \mid x_2, ..., x_n)_{\alpha} = 0.$$

- (2) As $J(x,y|x_2,...,x_n,t)$ is invariant under any permutation of $x,x_2,...,x_n$ it follows that $(x,x|x_2,...,x_n)_{\alpha}$ is invariant under any permutation.
- (3) For all $c \in F$,

$$(cx, x \mid x_{2}, ..., x_{n})_{\alpha}$$

$$= \inf \left\{ s: J(cx, x \mid x_{2}, ..., x_{n}, t) \ge \alpha \right\}$$

$$= \inf \left\{ s: J(x, x \mid x_{2}, ..., x_{n}, \frac{s}{\mid c \mid}) \ge \alpha \right\}.$$
Let $t = \frac{s}{\mid c \mid}$ then,
$$(cx, x \mid x_{2}, ..., x_{n})_{\alpha}$$

$$= \inf \left\{ \mid c \mid t: J(x, x \mid x_{2}, ..., x_{n}, t) \ge \alpha \right\}$$

$$= \mid c \mid \inf \left\{ t: J(x, x \mid x_{2}, ..., x_{n}, t) \ge \alpha \right\}$$

$$= \mid c \mid (x, x \mid x_{2}, ..., x_{n})_{\alpha}.$$

$$(4) (x,y|x_2,...,x_n)_{\alpha} + (x',y|x_2,...,x_n)_{\alpha}$$

$$= \inf \{ t: J(x,y|x_2,...,x_n,t) \ge \alpha \} + \inf \{ t: J(x',y|x_2,...,x_n,t) \ge \alpha \}$$

$$= \inf \left\{ t + s : J(x, y | x_2, ..., x_n, t) \ge \alpha, J(x', x | x_2, ..., x_n, s) \ge \alpha \right\}$$

$$= \inf \left\{ t + s : J(x + x', y | x_2, ..., x_n, t + s) \ge \alpha \right\}$$

$$= \inf \left\{ r : J(x + x', y | x_2, ..., x_n, r) \ge \alpha \right\}, r = t + s$$

$$= (x + x', y | x_2, ..., x_n)_{\alpha}.$$

Therefore $(x + x', y | x_2,...,x_n)_{\alpha} = (x, y | x_2,...,x_n)_{\alpha} + (x', y | x_2,...,x_n)_{\alpha}$.

Thus $\{(\bullet, \bullet | \bullet, ..., \bullet)_{\alpha} : \alpha \in (0,1) \}$, is a strong n-inner product on X.

Let $0 < \alpha_1 < \alpha_2$. Then

$$(x, y | x_2, ..., x_n)_{\alpha_1} = \inf \{ t : J(x, y | x_2, ..., x_n, t) \ge \alpha_1 \}$$

 $(x, y | x_2, ..., x_n)_{\alpha_2} = \inf \{ t : J(x, y | x_2, ..., x_n, t) \ge \alpha_2 \}.$

As $\alpha_1 < \alpha_2$

$$\Rightarrow \left\{ t: J(x,y \mid x_2,...,x_n,t) \ge \alpha_2 \right\} \subset \left\{ t: J(x,y \mid x_2,...,x_n,t) \ge \alpha_1 \right\}$$

$$\Rightarrow \inf \left\{ t: J(x,y \mid x_2,...,x_n,t) \ge \alpha_2 \right\} \ge \inf \left\{ t: J(x,y \mid x_2,...,x_n,t) \ge \alpha_1 \right\}$$

$$\Rightarrow (x,y \mid x_2,...,x_n)_{\alpha_1} \ge (x,y \mid x_2,...,x_n)_{\alpha_2}.$$

Hence $\{(\bullet, \bullet | \bullet, ..., \bullet)_{\alpha} : \alpha \in (0,1) \}$, is an ascending family of strong n-inner products corresponding to the fuzzy strong n-inner product on X.

Inspired by the theory of α -n-normed linear space that was introduced in [8], we now inter-relate -n-norm and strong α -n-inner product in the following theorem.

Further we prove the Cauchy-Buniakowski inequality for strong α -n-inner product space in the following theorem.

Theorem 4.2

Let $\{X, (\bullet, \bullet \mid \bullet, ..., \bullet)\}$, be a strong α -n-inner product space. Then the following statements are equivalent.

(1)
$$||x, x_2, ..., x_n||_{\alpha} = (x, x | x_2, ..., x_n)_{\alpha}^{\frac{1}{2}}$$
 defines an α -n-norm on X.

$$(2) |(x,y|x_2,...,x_n)_{\alpha}| \leq (x,x|x_2,...,x_n)_{\alpha}^{\frac{1}{2}} (y,y|x_2,...,x_n)_{\alpha}^{\frac{1}{2}}$$

Proof

$$(1) \Rightarrow (2)$$

Assume (1) is true. We have to prove (2).

If y = 0, then equality holds in (2). Consider,

$$0 \le \| |x - \lambda y, x_{2}, ..., x_{n}| \|_{\alpha}^{2}$$

$$= (x - \lambda y, x - \lambda y | x_{2}, ..., x_{n})_{\alpha}$$

$$= (x, x | x_{2}, ..., x_{n})_{\alpha} - \overline{\lambda}(x, y | x_{2}, ..., x_{n})_{\alpha} - \lambda(y, x | x_{2}, ..., x_{n})_{\alpha} + \lambda \overline{\lambda}(y, y | x_{2}, ..., x_{n})_{\alpha}$$
Let $\lambda = \frac{(x, y | x_{2}, ..., x_{n})_{\alpha}}{(y, y | x_{2}, ..., x_{n})_{\alpha}}$

$$\Rightarrow 0 \le \| x, x_{2}, ..., x_{n} \|_{\alpha}^{2} - \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}} - \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}} - \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}} - \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}}$$

$$- \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}} + \frac{|(x, y \mid x_{2}, ..., x_{n})_{\alpha}|^{2}}{\| y, x_{2}, ..., x_{n} \|_{\alpha}^{2}}$$

$$\Rightarrow 0 \le \|x, x_2, ..., x_n\|_{\alpha}^2 - \frac{|(x, y \mid x_2, ..., x_n)_{\alpha}|^2}{\|y, x_2, ..., x_n\|_{\alpha}^2}$$

$$\Rightarrow \| x, x_2, ..., x_n \|_{\alpha}^2 \| y, y_2, ..., y_n \|_{\alpha}^2 \ge | (x, y | x_2, ..., x_n)_{\alpha} |^2$$

$$\Rightarrow |(x,y \mid x_2,...,x_n)_{\alpha}| \leq (x,x \mid x_2,...,x_n)_{\alpha}^{\frac{1}{2}}.$$

- $(2) \Rightarrow (1)$
- (i) Clearly

$$||x_1, x_2, ..., x_n||_{\alpha} = 0$$

$$\Leftrightarrow (x_1, x_1 \mid x_2, ..., x_n)_{\alpha}^{\frac{1}{2}} = 0$$

 $\Leftrightarrow x_1, x_2, ..., x_n$ are linearly dependent.

- (ii) As $(x_1, x_1 | x_2, ..., x_n)_{\alpha}$ is invariant under any permutation of $x_1, x_2, ..., x_n$ it follows $||x_1, x_2, ..., x_n||_{\alpha}$ is invariant under any permutation of $x_1, x_2, ..., x_n$.
- (iii) $\| cx_1, x_2, ..., x_n \|_{\alpha}$ = $(cx_1, cx_1 | x_2, ..., x_n)_{\alpha}$

$$= \overline{cc}(x_1, x_1 \mid x_2, ..., x_n)_{\alpha}$$

$$= |c|^2 (x_1, x_1 \mid x_2, ..., x_n)_{\alpha}.$$

Taking square root,

$$\Rightarrow \| cx_1, x_2, ..., x_n \|_{\alpha} = \| c \| \| x_1, x_2, ..., x_n \|_{\alpha}$$

(iv)
$$||x+y,x_{2},...,x_{n}||_{\alpha}^{2}$$

$$= (x+y,x+y|x_{2},...,x_{n})_{\alpha}$$

$$= (x,x|x_{2},...,x_{n})_{\alpha} + (x,y|x_{2},...,x_{n})_{\alpha} + (y,x|x_{2},...,x_{n})_{\alpha} + (y,y|x_{2},...,x_{n})_{\alpha}$$

$$= (x,x|x_{2},...,x_{n})_{\alpha} + (x,y|x_{2},...,x_{n})_{\alpha} + 2 \text{ re } (x,y|x_{2},...,x_{n})_{\alpha}$$

$$\leq ||x,x_{2},...,x_{n}||_{\alpha}^{2} + ||y,x_{2},...,x_{n}||_{\alpha}^{2} + 2||x,x_{2},...,x_{n}||_{\alpha}||y,x_{2},...,x_{n}||_{\alpha}$$

$$\leq \{||x,x_{2},...,x_{n}||_{\alpha} + ||y,x_{2},...,x_{n}||_{\alpha}\}^{2}$$

$$\Rightarrow ||x+y,x_{2},...,x_{n}||_{\alpha} \leq ||x,x_{2},...,x_{n}||_{\alpha} + ||y,x_{2},...,x_{n}||_{\alpha}$$

References

- [1] M. Abdelwahab, El-Abyad, Hassan M. El-Hamouly, Fuzzy inner product spaces, Fuzzy Sets and Systems, 44 (1991) 309-326.
- [2] Y.J. Cho, M.Matic, J. Pecaric, Inequalities of Hlawka's type in n-inner product Space, Commun. Korean Math. Soc., 17 (4) (2002) 583-592.
- [3] Y.J. Cho, C.S. Lin, S.S. Kim, A. Mislak, Theory of 2-inner product space, Nova Science Publishers, New York, 2001.
- [4] C.R. Diminnie, S. Gahler, A. White, 2-inner product spaces, Demonstratio Mathematica, 6 (1973) 525-535.
- [5] C.R. Diminnie, S. Gahler, A. White, 2-Inner product spaces II, Demonstratio Mathematica, 10 (1977) 169-188.
- [6] A. Misiak, n-inner product spaces, Math.Nachr., 140 (1989) 299-319.
- [7] A.Misiak, Orthogonality and orthonormality in n-inner product spaces, Math.Nachr., 143 (1989) 249-261.

- [8] AL. Narayanan, S.Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. and Math. Sci., 2005 (24) (2005) 3963-3977.
- [9] S. Vijayabalaji, N.Thillaigovindan, Fuzzy n-inner product space, Bulletin of Korean Mathematical Society, 43 (3) (2007) 447-459.