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ABSTRACT

Understanding the concept of unfamiliar domain or
requirements document is very important for the domain
expert and requirements engineer. Abstraction
identification is a process to get a quick grasp ofl the
important concepts present in the particular requirement
documents. To identify the concept with in unstructured
paper and from unconstrained natural language from
requirements documents are challenging in software
engineering. Many techniques have been proposed for
abstraction identification. A New approach Ontology
Based Abstraction Identification is pfoposed to give the
precise understanding of the abstraction identification.
The comparative study presented in this paper will provide
the guidelines to requirement engineers, domain experts
and software developers for the quick software building
-ability.
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L INTRODUCTION

Managing software consistency should be car.fied out at
the very initial stage of software engineering [3] - software
requirement analysis (SRA). Abstraction identification
has been proposed and evaluated as a useful techrrigue

in requirement engineering (RE).

The term Abstract[13] means theoretical, conceptual,
intangible, summary, extract, take out, select, precise,

synopsis, or short version.

“Abstraction” refers to an entity or concept that has a
particular significance in the domain. “Abstraction”
literally Means, concept, idea, thought, notion, construct
or generalization. This may be formed by reducing the
information content of a concept or a noticeable incident,
usually to preserve only information that is relevant for a

particular purpose.

Computer scientists use “abstraction” and communicate
their solutions with the computer in sﬁme particular
compﬁter language. Abstraction allows software
deve_lopers to separate categories and concepts from
instances of implementation. So they do not depend on
concrete details of software or hardware, but on an
abstract contract. Abstraction is a process by which
concepts are derived from the usage and classification of

first principles, literal ideas or other techniques.
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T1. ABSTRACTION IDENTIFICATION { '
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An early stage in requirements engineering is abstraction
identification. Abstraction identification is named as a

key problem in Reqﬁirements Analysis (RA) [7]. Hence,

abstraction identification has been done manually by an -

RA. The RA scans all the transcripts, trying to note

important subjects and objects of sentences, i.e., nouns.

The problem is that humans get tired, get bored, fall asleep,

and overlook relevant ideas. So it is proposed the tools
that do the clerical pért of the search without getting tired,
falling asleep and overlooking anything. The human RA
still has to do all of the thinking with the output o.'f thie
tools, but he or she will be confident that no piece of
information has been overlooked in the process‘ of
gathering input to the human process of abstraction

identification. - \
In Software Requirement Specification, Final produc\fu
“Abstraction Identification™ is simply known as A
Contract Document, which is used as a communication
medium between the supplier-and the customer. Once the
software requirement sp.ecification is finished and
accepted by all customers,' the end of the requirements
engineering phase hag been reached. It is not to say, that
after the acceptén_ce phase, no requirements can be
changed, but the changes must be strongly controlled.
The sofiware requirement specification should be edited
by both the supplier and the customer, as initially neither
has both the knowledge of what is required(the seller)

and what is feasible (the customer) [15].
a. Software Requirement Specification

A software requirement specification has a number of

purposes and contexts in which it is used. This can vary

from a group of companies publishing a software
requirement specification to other companies for
competitive tendering or the companies writing their own
software requirement specification in response {0 a user
requirement documents. Firstly, the author of the

document has to write the document in such a way that it

-is general enough as to allow a number of different

suppliers. This leads to propose solutions, and in the
same time it has number of constraints which can be used
in the requirement documents. Secondly, the software
requirement specification is used to cépture the user’s
requirements and if any best part of the requirement’s
conflicts and inconsistencies define system and

acceptance testing activities.

A software requirement specification in its most basic
form is a formal document used in communicating the
software requirements between the developer and the
customer. With this knowledge the minimum amount of
.information of the software requirement specification .
should contain is a list of requirements which has been
agreed by both parties. The different types of
requirements can be categorized as: Functional,
Performance, Documentation, Operational, Interface,

Resource, Safety, Quality, Reliability, Acceptance testing,

Verification and Maintainability requirements.

Here, the part of Requirements document is a reference
document, i.e., SRS document which is a contract between
the development team and the customer. The SRS
document is kniown as black-box specification. The black
box system is considered as an internal detai! is not'known..
Only its visible external {i.e. input/output) behavior is
documented. Requirements traceability was deﬁned as
“the ability to describe and follow the Eife ofarequirement,

in both ahead and back direction”.
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However the requirements will only give a narrow view of
the system and additional information is required to place

the system into a context which defines the purpose of

. the system. This additional information will aid -the :

g developer in creating a software system which will be

aimed at the user’s ability and the clients function [15].
ITI. PROBLEMS IN ABSTRACTION IDENTIFICATION

Major problem in software development is to find
Abstraction identification which is faced by requirement
engineers, domain ‘experts and software developers.
Problems in software requirement specaﬁcatlons are

divided into the followmg categories,
@ Problems in classification

* Problems in identification, (in any software model

construction)
IV. METHODS

The following methods are explained to sblve the problems

in. Abstraction Identification in Requirement Engineering,
L Relevance based abstraction identg'ﬁcation.

In Relevance based Abstractlon Identification (RAI)
method, it compares with the human _]udgement and
discusses the technigues, how RAI could be used to good

ef_fect in Requh‘eme_nts Engineering [10].

The two techniques RAI-0-and RAI-1 are used to identify

the concepts in requirement document.

- The first version of RAI is RAI-0 which is clearly reported.
by the following procedure, .

1 Every word in the domain text is annotated witha

Part of- Speech tag (PoS tag).

2 The set of words is filtered to remove common
~ words unlikely to signify abstractions. Sevéral lists
of such stop words exist; RAT uses the ONIX {Onix

text retrieval toolkit) list.

3. The remaining words are lemmatized toreduce them
to their dictionary form, to collapse inflected forms
of words to a base form or lemma. Thus, for
example, tag and tags wil'I be recognized as terms
referring to the same concept despite. having

different lexical forms.

4, Each wordis assigned a Log-Likelihood (LL) value
by applying the corpus-based frequency profiling
approach described above, using the 100 million
words British National Corpus (BNC) as the

normative corpus K.

5 Syntactic patterns are'applied to the text to identify

multiword terms.

6. A significance score is derived for every term by
applying.

7. -ldentified terms are sorted Based on their

significance score and the resulting list is returned.

The proceduré of RAI-1 is as follows:

‘The major modification to RAI-0 made for RAI-1

addressed a pattern that was noticed in the output from
RAI-0. ' This pattern was an effect of the variable values
of k assigned to component words of multiword terms, It
is established that assigning variable weights produced
slightly better performance than wei ghting every
cqﬁlponent word equally. However, as a side-effect,
compound terms composed of the same nurber of words

and ending in the same head word tended to cluster
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together. This is because the headword is weight d most
heavily by being assigned the highest value of k in. [fthe
headword has a relatively high LL value compared to the
other list words in the term, it will make a dominating
contribution to the term’s overall sig.niﬁcance value. Thus,
terms that share the same high LL-value headword, tend

to have similar significance values.

Human judgement is needed to infer abstractions from
their signifiers. RAT is designed so that the requirements
engineer would work down from the most significant term,
stopping when recall dropped below an acceptable level
but drawing on other evidence to help form an opinion
about whether each term was‘ a genuine domain

abstraction.

These are presented a technique for the identification of
single- and multiword abstractions which we call

Relevance-Based Abstraction Identification (RAI).
2. Automatic Results Identification

Amethod for Automatic Results Identification in Software
Engineering Papers [8) explains an analysis of the main
methods for sentence classification in scientific papers
and evaluates the feasibility of this technique in
unstructured papers in Software Engineering area. A
summary of automatic analysis of abstractions and
indexing can also be found from the requirements
document [5]. In order to automatically find the results or
terms, tests are conducted with the existing methods using
unstructured Test Software papers [8,9], These results
are far below reported by the authors with input sets
composed by structured health papers. Three different
approaches followed.by three different authors are as

fotlows[8]:

Agarwal [1,8] has described the methods in classifying
sentences automatically. A fuie-based and machine-
learning approach is explained to classify a sentence into
the “Introduction, Methods, Results and Discussion”

categories. Shortly it is known as IMRAD. [1,4].

The following procedures are the IMRAD categories:
L A Baseline System

il. A Rule-based System

Tii. Supervised Machine-Learning Systems Trained

on Non-Annotated Corpus

iv. Supervised Machine-Learning System Trained on

Manually Annotated Full-Text Sentences
v. °  Machine-Learning Systems

1bekwe-SanJuan [6,8]has posted the results for
“Flentifying Strategic Information from Scientific Articles
through Sentence Classification™ topic and Lexico-
syntactic patterns method to classify the sentences is
used here. After sentence categorization, users can
navigate the result by accessing specific information types
and the annotated sentences are clustéred. These results

can be used for advanced information retrieval purposes.

Teufel [8,11] has explained about classification techniques
in his fopic “sentence extraction as a classification task”.
A specialist can be used to give bobklovers an idea of
what the longer text is about or it can used as input into a
process to produce a more coherent abstract. Here, a

method used for sentence selection as classification.

3. Automatic extraction of glossary terms

Amethod for the “Automatic Extractioﬁ of Glossary Terms

from Natural Language Requirements” is presented in this

topic [2]. The glossary terms are id\_éntiﬁed in two steps:
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(@  Compute units (which are candidates for glossary

terms)

(b}  Precise the result between the mutually exchisive

units to identify terms,

' This introduces novel linguistic techniques to identify

auxiliary verbs [14], process and abstract nouns. The
recognition of units also handles adjectival meodifiers and
co-ordinating conjunctions. This requires solving
adjectival modifier ambiguity and co-ordination amnbiguity.
The identification of terms in the units adapts an in-
document statistical metric. Here, an evaluation of a

method. is presented over a real-life set of software

requirements’ documents with a base algorithm and

compare our results. The problematical linguistic
classification and the tackling of ambiguity result in

superior performance by the base algorithm as followed:

e . Categorize nouns into abstract, concrete and
 process

o Categorize verbs into auxiliary and concrete

° Explanation of co-ordinating conjunctions and

. adjectival modifiers of nouns

. Statistical metric for solving coordination

ambiguity and adjectival ambiguity.

Automatic glossary term extraction uses the following

techniques {2]:

A. Pre-Processor techniques

B. Unithood Determ:’natz’on, includes
1) Handling Co-ordinating Conjunctions =~
2) Handling Adjectival Modifiers |

3) Handling Nominalizations

é,C. Termhoéd Determination, includes the step
1) Linguistic Techniques and

2) Statistical Techniques, in Termhood

Determination

The pre-pr.ocessor identifies requiremnents sentences as
those which begin with an explicit label and identifies
sentence boundaries. Words in title case, words in capital -
case and words in quotes are converted into an internal
parser token. However, a list of exceptions are maintained
containing words such as — ‘only’, ‘always’, ‘and’, etc.
where the case of such words are ignored. All acronyms
are automatically treated as glossary terms and placed in
the entity list. The contents within the brackets and the
brackets themselves are pruned from the requirement,
Fmally, extra white spaces from the requirements are
trimmed.

The Unithood Determination architecture identifies all

“units” in a requirement sentence. A unit is a word or

- phrase that éonveys meaning. The approach is to look -

for infinitives of verbs and the algorithm: “Algorithm to

identify nominalizations” is given below:

A noun phrase such as ‘data synchronization’ is split

into two units - ‘data’ and ‘synchronization’.

1. Indicator Noun (IN) = the head word in the noun
phrase.

"2 if IN is one of the predefined process nouns like

“event”, “process”, and “method”
3. the Noun is process
4. else
5. forthe IN, Find the infinitive modiﬁer type

145




Karpagam Jcs Vol. 8 issue 3 Mar. - Apr. 2014

6. ifthe infinitive is a verb then tag based on g{bdiﬁer

7 if the modifier ends in “tion”, “ment”, etc
8 Noun is a proceé.s nouns

9. end if

10. | -end if

1. endif

_ In Termhood Determination, the units determined in the
previous module are now checked for termhood - ie.
identify the units in two steps which truly carry out domain

_ specific information according to the given requirements’

document.

a) | The algorithm “Linguistic technique in Term hood
Determination” is given below for the

determination of the terms from it.
L input — The object, U, with the units
2. foreachrow in U tillk rows)
3. for .each‘ Unit in

4, Indicator Noun (IN) = the head word in the Unit.

5 if IN is one of the {list of common concrete nouns}
6.  tagas Concrete, continue to next Unit
7 else if the infinitive of the IN is an adjective then

tag as abstract noun

8  else if the infinitive of the TN is a verb then tag

based on modifier

LI 14

G, - if the modifier ends in “er”, “or” then tag as

concrete noun.

10.  else tag as Abstract noun,

1L end if

12, Prune Units that are abstract ot contains ‘below’,

- ‘following’, anaphora, etc
13. end for
14, end for

b) Statistical Technique in Termhood Détermination,
involves Determination of terms which is done in
three steps. In the first step, all those units that
have no mutually exclusive options (i.e. no
ambiguity exists) are chosen as terms. In step two,
the resolved terms are used to select among the
mutually exclusive units. This step is run
recursively till no more resolﬁtions are possible.
Finally, in step three, those options that could not

be resolved are shown to the user for resolution.

By using these algorithms, this paper explains the
Automatic extraction of glossary terms from natural

language requirements.

4. AbstFinder

The approach of a tool AbstFinder {7] is for a Prototype
MNatural Language Text Abstraction Finder for Use in
Requirements Elicitation. Typically, the abstractions must
be found among the large mass of natural language text
collected from the clients and users. To solve the problems
of requirements elicitation, this paper motivates and
describes an approach, based on traditional signal
processing methods, for obtaining abstractions in natural
langﬁage text and presents a new tool “AbstFinder” as

an implementation.

_In this paper, the tool AbstFinder describes the phrases

of the remainder were analyzed very carefully in order io
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see if AbstFinder missed any abstraction. The phrases of 3.

the remainder were separated to several categories

according to their characteristics as follows:

1. Most of the phrases originate from the strict meta-

language of the requirements specification format

of the human-made document, such as “activate”,
“allow” “deactivate”, ‘Qhefein”, “include™,
“integrate”, “must”, “only”, “provide”, which are
not abstractions and were used only in the human- _
made document for stating requirements and not

in the RFP original transcript.

2 Some concepts were in different grammatical forms
such as “transmit” in the Abst-Finder abstraction
list, and “transmitting”, “transmitters”, and-
“transceiver” in the human- made document. Those
words in the leftovers do not carry any new

concept, they actualIy describe the same

abstraction. The same is for: “calibrate” and g

N ) “calibration” “assigned” and “assignment”. While
AbstFinder is designed to classify all the
“transmit....” words as single abstractions, Strainer
is designed to remove only whole words and does

not remove words that properly contain a

recognized root, If Strainer were to remove parts
of-words, then the remainder of the document will
be a mass of unreadable text. For instance,

- suppose that “inter” were found by AbstFinder as

a common part among “interchangeabili‘;y” and
“'interfacles”. Removing “inter” as part of word
e : would leave in the lefiovers “changeability” and
| “faces”. Both of these accidentally generated

- words are garbage relative to the application.
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Acronyms such as “NBC” are introduced to
replace a longer full phrase such as _“Nuclear,
Biological, Chemical”; the full phrase appears only
once at the introduction of the acronym or in a
dictionary of acronyms, and the acronyin appears
many times throughout the document. The
acronyms are used to save the writing of the longer
full phrase. AbstFinder did not identify many
acronyms. Many acronyms are shorter than the

WordThreshold, and a full phrase if appears only

once it is not gomg to be caught by any ﬁ'equency-
~ based scheme. Actually, only the “NBC” was not

found, all the others were found since the term of
the acronyms were repeated in the text more than

once. Given that reducing WordThreshold causes

~ generation of too much noise, there are two

solutions, both general enough to be made part of

a standard scenario for the elicitor,

The synonym dictionary can be used to replac_e
the acronyms by their full phrases for the purpose

of abstraction identification.

Recognize all the acronyms as important

- abstractions, log them as abstractions, and then

add them to the ignored-app! ication-phrases-file.
Only after recognizing the abstractions, the elicitor
may switch to using acronyms.as abstractions

identifiers.

Ten concepts appeared in the leftovers because
they appear in the RFP only once, and AbstFinder
identifies only concepts that appear more than
once, at least once for definition and oncs for use.
Of these, five phrases were synonyms in the

context of the system that was defined in the RFP,
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such as “contour” and “elevation”, and “gemy”
and “threats” that occurred because the synonym-

file was not implemented yet.

5. The remaining five phrases were specific examples
of some already captured abstractions and
appeared in the text with linguistic clues, “i.e.”,
“g.g.”, and “for example”. These are not
abstractions; they are details that will be put inside

the abstraction.

To sum up, after some generally applicable modifications
that should be part of a standard scenario for use of

AbstFinder, full coverage was achieved. This, by the way,

is how each case study led to the refinement of the use

scenarios,
5. Ontology based abstraction identification

Ontology is an explicit description of a domain which
includes hierarchical relationships, properties and
attributes of concepts, properties and attributes of
constraints and Individuals. Ontology defines a common
vocabulary and a shared understanding. It can be
developed to share common understanding of the
structure of information among people and among
software agents. This concept will be used to enable to
reuse of domain knowledge for introducing standards to

allow interoperability and to separate domain knowledge

from the operational knowledge.

Ontology learning [12] gréa_‘giy facilitates the construction
of entology by the ontology engineer. The notion of
ontology learning that proposes includes a number of
complementary disciplines that feed on different types of
unstructﬁred and semi-structured data in order to support

a semi-automatic and cooperative ontology engineering

process. Ontology learning framework proceeds through
ontology extraction, ontology import, ontology
refinement, and ontology pruning giving the ontology
engineer a wealth of coordinated tools for ontology

modeling.

Abstraction identification is an essential step in automatic
ontology learning or model generation. Though it is
mentioned all the proposed methods, an Ontology Based
Abstraction Identification for requirement document is
also needed for the better solution of abstraction

identification.
IV. DhscussioN

The results of the above methods are discussed in the
categorization of sentences and concepts that represent
abstraction of requirement documents. The demonstrated
feasibility study uses the different methods and
techniques in unstructured requirement documents, The
precision found in the case studies fell far short of the
tests on terms and sentence classification. The anthors
have given their original studies and analyzed with
structured and unstructured requirement documents from
different areas. The summary of the methods proposed
for different techniques iﬁ software requirements. A
proposed method “Ontology Based Abstraction
Identification™ also introduced for further better results
for abstraction identification to the use of software

engineers and software developers.
V. CoNCLUSION

Many techniques have been proposed to refer abstraction
identification. The comparative study presented in this
paper will provide the guidelines to requirement engineers,

domain experts and software developers for the faster
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knowledge of software censtructing ability. Comparing

other techniques proposed in this literature, the research

of Ontology Based Abstraction Identification study wiil

. be a good result of the previous effectiveness in

¢ abstraction identification.
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