
ABSTRACT

INTRODUCTION

Cloud computing has formed the conceptual and

infrastructural basis for tomorrow's computing. The

global computing infrastructure is rapidly moving

towards Cloud-based architecture. While it is important

to take advantage of Cloud-based computing by means

of deploying it in diversified sectors,the main pillars of

Cloud-Native applications are based on microservices

architecture approaches, which can evolve with agility

and scale to limits that would be difficult to achieve in a

monolithic architecture deployed to either on-premises

or Cloud environment. The key difference between a

Cloud-native application and a simpler Cloud-

Optimized web app is the recommendation to use

microservice architectures in a Cloud-native approach

[11]. Cloud-optimized apps can also be monolithic web

apps or N-Tier apps. The microservice architecture is

an advanced approach that onecan use for applications

that are created from scratch, or when Cloud-native

applicationsevolve from existing applications[6]. This

paper presents a review on the Cloud-native application

modernization in micro servicearchitecture [10]

Keyword : Microservices, cloud-native architecture,

Software Modernization, cloud computing.

I.

Microservice architecture is an approach to building a

server application as a set of small services. That means

microservice architecture is mainly oriented to the

backend, although the approach is also being used for

the frontend. Each service runs its own process and

communicates with other processes using protocols

such as HTTP/HTTPS, Web Sockets, or AMQP [6].

Each microservice implements a specific end-to-end

domain or business capability within a certain context

boundary and each must be developed autonomously

and is deployable independently [1].

Each microservice should own its related domain data

model and domain logic (sovereignty and decentralized

data management) based on different data storage

technologies (SQL, No SQL) and different

programming languages [7]. When developing a

microservice, size should not be the important point.

Instead, the important point should be to create loosely

coupled [11] services so that we have autonomy of

development, deployment and scale for each service

[1]. Of course, when identifying and designing micro

services, we should try to make them as small as

possible, as long as you do not have too many direct

dependencies with other microservices. More

important than the size of the microservice is the

internal cohesion it must have and its independence

from other services [10].

Microservices enable better maintainability in

complex, large and highlyscalable systems by letting

Hasna mol p1

CLOUD-NATIVE APPLICATION MODERNIZATION IN

MICROSERVICE ARCHITECTURE

1Guest Lecturer, Department of Computer Application, Cochin

University of Science and Technology.

11

Cloud-native Application Modernization in Microservice Architecture

you create applications based on many independently

deployable services, of which eachhasgranular and

autonomous lifecycles [4]. As an additional benefit,

microservices can scale out independently. Instead of

having a single monolithic application that you must

scale out as a unit, you can scale out specific micro

services[6]. That way, you can scale just the functional

area that needs more processing power or network

bandwidth to support demand, rather than scaling out

other areas of the application that do not need to be

scaled[7]. That means cost-saving, because you need

less hardware.The difference between monolithic

deployment approach and microservice application

approach is shown diagrammatically in fig.1 [1].

Fig.1 The difference between monolithic deployment

approach and microservice application approach [1]

The following are important aspects to enable success

in going into production with a micro services-based

system [1].

8 Monitoring and health checks of the services and

infrastructure.

8 Scalable infrastructure for the services (that is,

Cloud and orchestrators).

8 Security design and implementation at multiple

levels like authentication,authorization,

secretsmanagement andsecure communication,

etc.

8 Rapid application delivery, usually with

different teams focusing on different

microservices.

1.1. Data sovereignty per microservice

An important rule for microservices architecture is that

each microservice must own its domain data and logic.

Just as a full application owns its logic and data, so must

each microservice own its logic and data under an

autonomous lifecycle, with independent deployment

per microservice [6]. The following figure shows the

data in traditional approach and microservice approach

fig.2 [1].

Fig.2 Data in traditional approach and data in

microserviceapproach.

A monolithic application with typically a single

relational database has two important benefits: ACID

transactions and the SQL language, both working

across all the tables and data related to your application.

This approach provides a way to easily write a query

12

Karpagam Jcs Vol. 13 Issue 1 Nov. - Dec. 2018

13

that combines data from multiple tables [6].

Microservices-based applications often use a mixture

of SQL and NoSQL databases, which aresometimes

called the polyglot persistenceapproach [6].

2. Challenges and solutions for distributed data

management

2.1 How to define the boundaries of each microservice

Defining microservice boundaries is probably the first

challenge anyone encounters. Each microservice has to

be apiece of your application and each microservice

should be autonomous with all the benefits and

challenges that it conveys. But how do you identify

those boundaries? First, you need to focus on the

application's logical domain models and related data

[11].

2.2 How to create queries that retrieve data from several

microservices

A second challenge is how to implement queries that

retrieve data from several microservices, while

avoiding chatty communication to the microservices

from remote client applications [11].

2.2.1 API Gateway:For simple data aggregation from

multiple microservices that own different databases,

the recommended approach is an aggregation

microservice referred to as an API Gateway [4].

However, we need to be careful about implementing

this pattern, because it can be a choke point in your

system, and it can violate the principle of micro

serviceautonomy [6]. To mitigate this possibility, we

can have multiple fined-grained API Gateways with

each one focusing on a vertical "slice" or business area

of the system [5].

2.2.2 CQRS (Command and Query Responsibility

Segregation) with query/reads tables. Another solution

for aggregating data from multiple microservices is the

Materialized View pattern. In this approach, you

generate, in advance (prepare denormalized data before

the actual queries happen), a read-only table with the

data that are owned by multiple micro services [4].

2.2.3 Cold data in central databases. For complex

reports and queries that may not require real-time data,

a common approach is to export your "hot data"

(transactional data from the microservices) as "cold

data" into large databases that are used only for

reporting [5]. That central database system can be a Big

Data-based system, like Hadoop, a data warehouse like

one based on Azure SQL Data Warehouse, or even a

single SQL database used just for reports (if size will

not be an issue)[11].

2.3 How to achieve consistency across multiple

microservices:As stated previously, the data owned by

each microservice is private to that microservice and

can only be accessed using its microservice API.

Therefore, a challenge presented is how to implement

end-to-end business processes while keeping

consistency across multiple microservices [3].

2.4 How to design communication across microservice

boundaries

Communicating across microservice boundaries is a

real challenge. In this context, communication does not

refer to what protocol you should use (HTTP and

REST, AMQP, messaging, and so on) failure and even

occurrence oflarger outages. A popular approach is to

implement HTTP (REST)[11] based microservices,

due to their simplicity. An HTTP-based approach is

perfectly acceptable; the issue here is related to how

Cloud-native Application Modernization in Microservice Architecture

14

you use it. If you use HTTP requests and responses just

to interact with your microservices from client

applications or from API Gateways,that is fine. But if

you create long chains of synchronous HTTP calls

across microservices, communicating across their

boundaries as if the microservices were objects in a

monolithic application, your application will

eventually run into problems [3].

8 Blocking and low performance.

8 Coupling microservices with HTTP

8 Failure in any one microservice

Therefore, in order to enforce microservice autonomy

and have better resiliency, the use of chains of

request/response communication across microservices

should be minimized [7]. For that only asynchronous

interaction must be used for inter-microservice

communication, either by asynchronous message- and

event-based communication, or by (asynchronous)

HTTP polling independently of the original HTTP

request/response cycle [1].

3. Orchestrators in microservices

An "Orchestrator" is the general term for a piece of

software that helps administratorsmanages these types

of environments [11]. They are the components that

take in requests like "I would like five copies of this

service running in my environment." They try to make

the environment match the desired state, no matter what

happens.Orchestrators[6] (not humans) are what take

action when a machine fails or a workload terminates

for some unexpected reason. Most orchestrators do

more than just deal with failure. Other features they

have are managing new deployments, handling

upgrades and dealing with resource consumption and

governance [10]. All orchestrators are fundamentally

about maintaining some desired state of configuration

in the environment. Aurora on top of Mesos, Docker

Datacenter/Docker Swarm, Kubernetes, and Service

Fabric are the examples of orchestrators. These

orchestrators are being actively developed to meet the

needs of real workloads in production environments

[2].

Conclusion

Building complex applications is inherently difficult. A

Monolithic architecture only makes sense for simple,

lightweight applications. We will end up in a world of

pain, if we use it for complex applications. The

Microservices architecture pattern is the better choice

for complex, evolving applications despite the

drawbacks and implementation challenges [1].

4. REFERENCES

[1]. Net Microservices architecture:Architecture for

Containerized .Net Applications Cesar de la

Torre, Bill Wagner, Mike Rousos .

[2]. Di Cosmo, R, Eiche, A, Mauro, J, Zacchiroli, S,

Zavattaro, G and Zwolakowski, J (2015).

Automatic Deployment of Services in the Cloud

with Aeolus Blender. 13th International

Conference on Service Oriented Computing,

ICSOC.

[3]. Aderaldo, C.M, Mendonca, N.C, Pahl, C and

Jamshidi, P (2017). Benchmark requirements

for microservices architecture research.

Proceedings of the 1st International Workshop

on Establishing the CommunityWide

Infrastructure for Architecture-Based Software

Engineering.

Karpagam Jcs Vol. 13 Issue 1 Nov. - Dec. 2018

15

[4]. Balalaie, A, Heydarnoori, A and Jamshidi, P

(2016). Microservices Architecture Enables

DevOps: Migration toa Cloud-Native

Architecture. IEEE Software. Volume: 33,

Issue: 3, May-June

[5]. Pahl, C, Brogi, A, Soldani, J and Jamshidi, P

(2017). Cloud container technologies: a state-

of-the-art review. IEEE Transactions on Cloud

Computing.

[6]. Pahl, C, Jamshidi, P and Zimmermann, O

(2018). Architectural principles for cloud

software. ACM Transaction on Internet

technology

[7] . B. Kitchen ham and P. Brereton. A systematic

review of Systematic review process research in

software engineering. Information and software

technology, 55(12):2042075, 2013.

[8]. Z. Li, P. Liang, and P. Avgerinos. Application of

Knowledge-based approaches in software

architecture: Systematic mapping study.

Information and Software Technology,

55(5):777-794, 2013

[9] . S. Newman. Building Micro services. O 'Reilly

Median., 2015.

[10]. C. Pahl and P. Jamshidi. Micro services: A

Systematic Mapping Study. In Proceedings of

the 6th International Conference on Cloud

Computing and Services Science Rome, Italy,

pages 137-146, 2016

[11]. M. Richards. Micro services vs. Service-

Oriented Architecture.O'Reilly Media, 2015.

Cloud-native Application Modernization in Microservice Architecture

