
Abstract 

Analyzing the tissues of human brain is now an important 

area in medical technology field. The segmentation helps 

physicians diagnose brain disorders like dementia, brain 

tumor etc. Magnetic Resonance Imaging (MRI) is an 

imaging modality used for taking brain images. In the past 

years, the segmentation methods were focused on 

conventional techniques. These techniques are classified as 

supervised, unsupervised, parametric models etc. The 

objective of these methods involves dividing brain regions 

into tissue types, localized structures etc. Nowadays, 

research has moved to neural networks and deep learning 

techniques that achieve robustness and accuracy. This article 

gives a complete literature study of various methods of 

segmenting brain regions. Every method includes the 

calculation of qualitative analysis such as Jaccard, Dice etc. 

These analyses are performed to compare the effectiveness 

of various segmentation methods.  

Keywords: Diagnosis, MRI, Human brain, Diagnosis, 

Segmentation.

Introduction

In earlier days, the medical imaging was used for 

basic purposes such as inspection and visualization of 

anatomical structures. Now it has become an important tool 

both for diagnosis and plan of treatment of various diseases. 

On the clinical side, MRI and Computerized Tomography 

(CT) are commonly - used imaging techniques, where CT 

gives bone details and MRI provides more details about soft 

tissues [1].

Skull stripping is the necessary work even for fetal 

brain segmentation [2], adult brain segmentation, and, 

further, the segmented brain image is used for tissue 

classification, sub- structure segmentation, volume 

rendering etc.[3-6]. Several research works have been done 

for skull-stripping [7-9] using region-based, edge-based and 

hybrid of both methods. All such existing works have their 

own merits and demerits. 

Automatic and semi-automatic methods

Deep learning method is used in medical image 

analysis [10] to make the computers to learn the features of 

human brain automatically. Instead of extracting brain 

portions, the feature- learning approach was used. In the 

medical field, the deep learning method is improved by 

Convolution Neural Networks (CNN). The application of 

CNN determines the protocol in the field of radiology. The 

quality of the image can also be improved by CNN. CNN is 

also used in image registration which enables a quantitative 

analysis of various types of images.

Most of the methods produce good results for T1W 

images, but fail in other type of modalities. To achieve this, a 

3D convolutional architecture is proposed [11]. The binary 

mask is generated by changing the threshold increases the 

value of sensitivity. The dataset of patients who are affected 

with brain tumor is experimented. The dataset consists of 

various types of images such as T2 weighted and FLAIR. The 

data are collected from various repositories like OASIS and 

IBSR. The Dice value is obtained as 0.9502 for OASIS 

dataset and 0.9632 for IBSR dataset. This method is proved 

to be useful for larger datasets.

Active contour method [12] has been developed to 
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classify the tissues of human brain. A 3D level set 

architecture is applied to classify the data based on intensity 

homogeneity. Prior information about data is avoided by 

initializing random seed. Three volumes of MRI data are 

used for experimentation. This method classifies the human 

regions into gray matter and white matter successfully. 

Quantitative analysis is performed to prove the efficiency 

and robustness of the method.  

A hybrid technique [13] is proposed by combining 

watershed and deformable models. The white matter in T1W 

image is localized and then watershed approach is applied. 

This approach works well even though non-uniform voxels 

are present. The upper bound region of cerebrospinal fluid 

(CSF) is taken as a threshold and the brain and non-brain 

regions are labeled. This method does not need any user 

intervention. The method is validated with manual 

segmentation results and leads to misclassification of some 

regions. 

The Skull-stripping problem is addressed using 

histogram analysis by partitioning gray levels [14]. The 

background region of an image is removed using the 

threshold. After the background of an image is removed, the 

pixels nearer to head region are considered to generate 

histogram. Two levels of histogram are generated for white 

matter and gray matter. Totally 80 volumes of datasets of 

different modalities are used and experimented. The result of 

this method is compared with popular existing methods like 

BET and BSE. 

The region based methods are intended to get the 

regions by using the spatial details of an image. Balan et al. 

[17] proposed a region based method an in this method they 

have used histogram analysis and mathematical morphology 

methods to extract the brain region from non brain region. 

Another region based method proposed by Atkin & 

Mackiewich [18] make use of histogram analysis and non-

linear anisotropic filter. In the successive step active contour 

is applied to find the brain boundary. A 3D skull-stripping 

automated method proposed by   Lemiux et al. [19]. Park & 

Lee [20] proposed a region growing method which initially 

selects a seed point and then grows by adding similar 

neighbor pixels and this process continues till the brain 

boundary. 

S.A. Sadananathan et al. [21]  intensity based 

thresholding  technique followed by graph cuts. The method 

supports to eliminate thin connectivity between brain regiona 

and its surrounding non brain regions. Shattuck et al.[22] 

proposed brain surface extraction (BSE) method by applying 

anisotropic diffusion filter. The characteristic of this filter 

smoothen unnecessary gradient of MR signals in the input 

image. They have also applied an edge detection technique 

along with morphological operations to detect the brain 

boundary. 

Smith proposed a brain extraction technique (BET), 

which uses intensity based histogram for obtaining rough 

brain mask. Inside the brain region, a triangular tessellation 

of sphere's surface is initialized and it is gradually increased 

towards edge of the brain. Zhuang et al. [23] proposed model 

based level set (MLS) method to eliminate skull region from 

input MR images. Segonne et al. [24] combined watershed 

and deformable surface method to provide accurate skull 

stripping method. Rehm et al. [25] proposed a skull stripping 

method which makes use of atlas based technique. The atlas 

is obtained using histogram of the input image and it is 

associated with BSE. A comparative analysis is done by 

Fennema-Notestine [26] on BET, BSE, HWA and 3D 

Intracranial. They concluded that BSE and HWA were  found 

to be more  efficient in brain segmentation. 

     

Conclusion

The segmentation of brain tissues is very important 

for the physician to diagnose and plan his treatment. Many 

computer assisted-algorithms have been developed for the 

purpose. This article discussed the recent techniques used for 
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segmenting brain tissues from skull portions. Every method 

has some limitations in terms of shape, structure and number 

of datasets used. The drawbacks and the comparison metrics 

used to know the performance were also discussed. 
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